
Using STREAM Files

Relativ to HMP 6.0 & SSR 47.1 by Paul H. Kimpel

he MCP has an extremely rich Logical I/O subsystem, especially in the capabilities it provides for disk files.
The way the MCP has traditionally organized and accessed disk files, however, is quite a bit different from
most other systems. In particular, Unix, Linux, and Microsoft Windows all treat disk files not as a set of rec-
ords, but as a continuous array (or stream) of data.

Abo

Stre

T

e
16-1

The MCP has supported stream files for more than ten years, starting in Mark 3.9. With the integration
between MCP and Microsoft Windows environments offered by the ClearPath product line, along with the
rapid rise of electronic file transfer and the Internet, the ability to directly access stream-oriented files in
ordinary MCP applications has become increasingly important.

This article describes the MCP implementation of stream files, how they differ from traditional MCP files,
and the restrictions that apply to streams that do not apply to other kinds of files. It also describes the file
attributes that are relevant to stream files and how you program for streams.

Stream files are presented here as if there are two types—record streams and byte streams. There is really
only one type, with byte streams implemented as a special case of record streams. The way in which you
typically program for and use byte streams, however, is very different from that for the more general case of
record streams. Therefore, this article maintains a distinction between record streams and byte streams to
separate the pragmatics of dealing with them.

Both types of stream files are available in MCP applications, but byte streams are the more interesting and
useful. This article focuses primarily on byte stream files, including specific programming techniques, utili-
ties in the MCP, and file transfer mechanisms. Finally, it presents some examples illustrating the use of byte
stream files in Algol and COBOL, and points out areas of the Unisys documentation where you can get
more information.

ut Stream Files
Traditional MCP files are organized around the concepts of logical records and physical blocks. User pro-
grams read and write files in units of logical records. By default, these units are all of a fixed length, but a
number of methods exist for handling variable length records as well. The MCP automatically assembles
and disassembles these logical records into blocks as they are moved between the user program’s record
area and internal memory buffers. These fixed-length blocks become the unit of data that is physically
transferred between memory and the disk device. The creator of a file determines the sizes of the records
and blocks, which are maintained as attributes of the file in the disk header.

In contrast, user programs in other systems traditionally use stream I/O. The concepts of records and blocks
do not exist, and there are typically no attributes that describe the internal structure or organization of a file.
Instead, the programs simply read and write arbitrary lengths of data at arbitrary relative offsets into a file.
The closest concept these systems have to a record is that of a “line”—a variable-length sequence of bytes
terminated by one or more delimiter characters, such as a carriage-return or line-feed. We usually refer to
these line-oriented files as “text files.”

Stream methods can be applied to files on disk, CD-ROM, printer backup, or tape. This article focuses on
stream files for disk.

ams in the MCP

You encounter stream files from a number of sources within the MCP environment. A common source is
Client Access Services, formerly known as NX/Services. When you transfer a file to an MCP shared di-
rectory using Microsoft Networking, by default you get a byte stream file.

16-2 \ Gregory’s ClearPath A-Series Technical Journal

Volume 16.01

The File Redirector is the complement to Client Access Services. It allows you to create or access files on
a remote shared directory using an MCP application program. These remote shares typically reside on a
Windows file server, but they can exist on any system that supports Server Message Block (SMB) protocols,
such as SAMBA, which is available for many versions of Unix and Linux. Since the Redirector accesses files
stored under another operating system directly, the files do not behave as traditional MCP files, and MCP
applications must access them as byte streams.

Byte stream files can also be created by both File Transfer Protocol (FTP) and OSI FTAM. Files gener-
ated by incoming FTP transfers with an FTPSTRUCTURE of FTPFILE are stored as byte streams. This includes
the FTP mapping styles RAW and FTPDATA. While not as commonly used as FTP, FTAM can also access and
transfer byte stream files in the MCP environment.

Files read directly from ISO 9660 and Joliet CD-ROM media are always accessed as byte stream files.

The MCP Print System can both generate and print byte stream files. You can specify file attributes that
cause the Print System to generate byte stream files instead of the standard printer backup file format. Files
generated by the PC and RTF printer drivers in the PRINTSUPPORT library are byte stream files. The Print
System can also read stream files generated by other systems and route them for local or remote printing.

MCP-based applications in all languages can generate and read stream files. This article discusses how to
do this using Algol, COBOL-74 and COBOL-85. The POSIX interfaces (typically used with C) inherently
read and write byte stream files. In addition, permanent directories are considered to be byte stream files.

Stream File Structures

Anyone who has built MCP applications has probably had to fuss over block size calculations for their files.
Records for traditional files must be contained entirely within a block. Blocks for a file are all of the same
fixed length, so the size of the block is constrained by the number of whole records what will fit within it.
Since disk devices read and write data in multiples of 180-byte sectors, blocks do not always fit perfectly in
sector increments. Any difference between the declared block size and an exact multiple of 180 bytes repre-
sents wasted space on disk, and is sometimes referred to as “block slop.” To minimize this wasted space,
good file design practice attempts to create block sizes that are equal to (or slightly less than) a multiple of
180 bytes.

The figure below shows the layout of records and blocks in one disk area for a typical traditional file. The
rectangles along the bottom represent physical disk sectors. The area is divided into blocks, each the same
whole number of sectors in length. Records do not span blocks and blocks do not span areas. Since the rec-
ord size in the figure does not create a block that is a multiple of 180 bytes in length, there is wasted space
at the end of each block. This example shows fixed-length records, but the arrangement is similar for a file
with variable-length records.

Stream files take a different approach in the way that records are laid out on disk—they do not have blocks!
In fact, specifying the BLOCKSIZE attribute for a stream file results in a non-fatal attribute error.

The next figure shows the layout of records on disk for a stream file. The logical records are simply written
continuously across the allocated space for the file. Just as with traditional files, there are no delimiter codes
between records. Individual records span sector boundaries, and as shown, can even cross area boundaries,
but logical records are not constrained to a fixed, pre-determined block size, hence there is never wasted
space on disk.

Rec Rec Rec Rec Rec Rec Rec Rec Rec

Block Block Block Wasted space

Disk Area
Sectors

Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

Next areaDisk Area

Using STREAM Files / 16-3

January, 2002

The MCP Logical I/O routines automatically fragment and reassemble records as necessary when moving
data between the user program record area and the stream file’s memory buffers. Application programs
simply perform reads and writes the same way they do with traditional files. Unlike traditional files, which
always read or write whole records with each physical I/O, stream files may perform more than one physical
I/O to read or write one logical record. Physical disk I/Os, of course, still start on a sector boundary and ex-
tend for a whole number of sectors.

Although stream files do not support the concept of blocks, memory buffers are still of a fixed size. By de-
fault, the MCP determines the buffer size, but you can override it with the BUFFERSIZE attribute.

Record Streams
Of the two types of stream files, record streams are the more general case. The way that you program for
and use record streams is very similar to that for traditional files.

Configuring Disk Files

Setting up an MCP application to use stream files is largely a matter of specifying the proper attributes.
There are a number of attributes that interact, so it is useful to begin by looking at the three file attributes
that control the general format and nature of disk files:

FILEORGANIZATION
describes the organization of data within a file at a level higher than records and blocks. There are a
number of mnemonic values for this attribute, but they break down into three main classes: normal or
“flat” files (NOTRESTRICTED, the default), indexed sequential files (KEYEDIO, KEYEDIOII, plus some oth-
ers), and relative files (RELATIVE).

BLOCKSTRUCTURE
determines the format of records within a block. A more intuitive name for this attribute would proba-
bly be “recordstructure.” It indicates whether the records are fixed length (FIXED, the default), variable
length (VARIABLE plus some others), or externally determined from the physical file medium (EXTER-
NAL).

FILESTRUCTURE
determines how the data is physically laid out on the disk. This attribute has three mnemonic values:

ALIGNED180 —
is the default layout and the one used by traditional files. Records are wholly contained within
blocks, blocks are the physical unit of I/O transfer, all blocks start on a sector boundary, all blocks
occupy a whole number of sectors, and sectors must be 180 bytes in size. These files can be “re-
blocked”—that is, they can be read with a different block size than the one they were created with,
as long as the original and new block sizes are integral multiples of the sector size.

BLOCKED —
is similar to ALIGNED180, but has some significant differences. Records are grouped in blocks, and
blocks are written on sector boundaries, but the sectors are not required to be 180 bytes in size.
Memory buffer size and physical I/Os may be in multiples of the declared block size.
FILEORGANIZATION must be NOTRESTRICTED. Reblocking is not allowed.

STREAM —
is the attribute value that makes a file a stream file. As discussed above, records are written to the
disk in a continuous stream, spanning sector and area boundaries as necessary. Physical I/Os are
buffered in memory and typically span multiple records. FILEORGANIZATION must be NOTRE-
STRICTED or RELATIVE. A feature somewhat like reblocking is supported, using the ANYSIZEIO at-
tribute.

Configuring Stream Files

To use a record stream file in an MCP application, three attributes must have particular settings.

16-4 \ Gregory’s ClearPath A-Series Technical Journal

Volume 16.01

• FILESTRUCTURE must have a value of STREAM. Since the default value is ALIGNED180, this value must be
explicitly specified.

• FILEORGANIZATION may be NOTRESTRICTED or RELATIVE. The default is NOTRESTRICTED, and for most
applications, is the only value of interest.

• BLOCKSIZE must not be specified for a stream file. Attempting to do so causes a non-fatal attribute error
at run time.

You should at least consider the settings of some additional attributes.

• BLOCKSTRUCTURE may be any value except LINKED. The default value is FIXED, but all other variable-
length formats are supported for record streams.

• MAXRECSIZE specifies the size of records (for variable-length records, the largest record) in FRAMESIZE
units.

• MINRECSIZE specifies, for variable-length records, the minimum record size in FRAMESIZE units. It is
not used with fixed-length records.

• BUFFERSIZE determines the number of words in memory buffers for the file and the size of physical
I/O transfers to disk. This attribute can be read for any type of file at any time. It can be set when a file
is closed for files with FILESTRUCTURE=BLOCKED or STREAM.

• AREASIZE or AREALENGTH determine the physical size of disk areas, as for traditional files. AREASIZE is
specified in units of records, while AREALENGTH is specified in FRAMESIZE units.

The Unisys documentation recommends that you normally let the MCP determine the value of the
BUFFERSIZE attribute, but some programs may benefit from a specified value. Files that are primarily used
for random I/O usually perform better with small buffer sizes. Very large files accessed sequentially usually
perform better with large buffer sizes. In general, for stream files, do not set this attribute to a value smaller
than the size of one record plus two sectors. The default value determined by the MCP will be between
2,000 and 5,000 words, depending on the amount of memory configured for your system. For details on this
subject, see the discussion of BUFFERSIZE in the File Attributes Programming Reference Manual and the
BUFFERGOAL option of the SF command in the System Commands Operations Reference Manual.

The Unisys documentation also recommends that the MCP should determine the area size for stream files.
The MCP value will be the largest size that is a multiple of MAXRECSIZE but not larger than 1,024 sectors.
However, for very large files, you probably want to override that default with a larger value. If you let the
MCP compute the area size, you usually want to set FLEXIBLE=TRUE so the areas will grow as the file ex-
pands. Note that AREASIZE is not meaningful for stream files if BLOCKSTRUCTURE is other than FIXED. For
other BLOCKSTRUCTURE values you should specify the area size using AREALENGTH.

There are some restrictions on certain attribute values for record streams and how such files can be used.

• FILEORGANIZATION values other than NOTRESTRICTED and RELATIVE are not allowed.

• The BLOCKSTRUCTURE value LINKED (normally used only by FORTRAN) is not allowed. All other
BLOCKSTRUCTURE values can be used with stream files.

• The combination of update I/O (UPDATEFILE=TRUE) and synchronized I/O (SYNCHRONIZE=OUT or writes
with the SYNCHRONIZE option) is not allowed. Attempting to do this turns off synchronization.

• Algol Binary I/O (using a “*” as the format part with a list) is not allowed.

• Programs cannot use checkpoint/restart facilities in the MCP if they have stream files open.

• CANDE does not support stream files. You cannot GET, MAKE, LIST, etc. a stream file from CANDE.
You can, however, use Library/Maintenance commands (COPY, CHANGE, REMOVE, ALTER) and the PRINT
command with stream files.

• Most Unisys utilities do not support stream files. Stream files can, however, be listed, copied, etc. with
SYSTEM/DUMPALL.

There are some other file uses that are potential problem areas when applied to stream files:

Using STREAM Files / 16-5

January, 2002

• Setting PROTECTION=PROTECTED preserves the end-of-file position for open files across a system restart.
For stream files, however, the EOF is recovered to the end of the last sector written, which is typically
after the end of the last record written.

• If you rewrite a variable-length record in a stream file, and the size of the record differs from its original
size, the MCP generates a record length (data size) error.

• Because stream files are not blocked like traditional files, attempting to access block-oriented attributes
results in a non-fatal attribute error at run time. These attributes include:

BLOCKSIZE
BLOCK
CURRENTBLOCK

• If BLOCKSTRUCTURE has a value other than FIXED, access to two additional attributes is not valid, since
in those cases both attributes are reported in units of blocks rather than records:

AREASIZE
LASTRECORD

Programming for Record Streams

Programming for record-oriented stream files is easy. The major consideration is the value of several attrib-
utes when the file is opened.

For input files, the easiest thing to do is set DEPENDENTSPECS=TRUE. Since FILESTRUCTURE, BLOCK-
STRUCTURE, and FILEORGANIZATION are physical file attributes, they will be established automatically from
the disk header. You can additionally specify BUFFERSIZE, if desired.

For output files, you must specifically declare the file as a stream file, along with record size and any other
attributes you need to configure the file.

• In most cases you can simply replace the BLOCKSIZE specification with a FILESTRUCTURE value of
STREAM.

• Depending on your specific requirements, you may want to specify the number of words for memory
buffers using BUFFERSIZE or the length of disk areas with AREALENGTH. Usually the MCP defaults for
these attributes will suffice.

• If you are creating or extending a stream file and using the MCP default area size, you probably want to
set FLEXIBLE=TRUE, since you are not controlling the area size.

Once stream files are open, there are essentially no differences compared to the way you access traditional
files. The syntax and semantics of READ, WRITE, SEEK, etc., are identical for stream files. With the exceptions
noted above, both random and sequential I/O are supported for stream files in the same way they are for
traditional files.

All of the discussion so far has been about stream files in general, and more specifically about record-
oriented streams. These record streams are useful and efficient. They avoid wasted space on disk and elimi-
nate the need to perform block sizing calculations when designing files. Because the system determines
buffer sizes based on total system memory, physical I/O for stream files is often at least as efficient as for
traditional files. Except for some inconveniences (such as the inability to access them with CANDE),
streams are arguably a superior file structure for many applications.

Even so, the discussion to this point has primarily been in preparation for a special case of stream files—
byte streams.

Byte Streams
Byte streams are typically the most common and most useful application of stream file structures. They
closely resemble the unstructured nature of files for other systems, and are usually compatible with them.

Given the ease and increasing importance of file transfer between the MCP and other operating systems,
and the excellent integration with Microsoft Windows that is a hallmark of the ClearPath architecture, the

16-6 \ Gregory’s ClearPath A-Series Technical Journal

Volume 16.01

ability to generate and process byte streams directly in MCP applications is extremely useful and often nec-
essary. Byte streams can also be useful in some applications that are solely MCP based. The remainder of
this article focuses primarily on byte streams.

Byte Stream Characteristics

A byte stream file is simply a stream of contiguous bytes. The MCP assumes no record or block structure for
the file. Any structure within the file must be handled by the application programs reading and writing the
file.

Another significant characteristic of byte streams is that the bytes are individually addressable. Programs can
seek to any byte position in the file and read an arbitrary number of bytes from that position. To application
programs, byte streams are essentially one long character string that can be accessed either sequentially or
randomly.

Note that this is a logical view of the file. Physically, the file must still be read and written in units of disk
sectors. The MCP’s Logical I/O subsystem must handle buffering of data between the disk and the applica-
tion programs, and must worry about the details of logical reads and writes starting at other than sector
boundaries.

One of the most common uses of byte streams on other systems is for text, or line-oriented files. If you have
ever used a text editor on another system, such as NotePad under Windows or vi under UNIX, you have
been manipulating a text file.

Text files use delimiter characters to divide the file into logical lines. You can think of these lines as “rec-
ords” of the file, but the concept of a record size for a text file does not exist. A line can be as long or short as
necessary, although some applications place a limit on the maximum length they will correctly handle, often
255 or 1,023 bytes.

Each operating system has its own convention for the delimiters used to divide a file into lines. There are
three common ones:

• Microsoft Windows and DOS use a carriage-return (CR) followed by a line-feed (LF) as the delimiter.
Although the delimiter is officially a two-character pair, many text editors and software tools under
Windows accept either a carriage-return, or a line-feed, or the CR-LF pair as a line delimiter.

• UNIX and Linux systems use the LF character as a line delimiter. This is sometimes referred to as the
“new line” (NL) character. CTOS systems also used this convention.

• Apple Macintosh systems use CR as the text delimiter.

A form-feed (FF) in the text typically indicates the start of a new page if the file is sent to a printer. Many
applications also treat FF as a line delimiter.

Byte Streams in the MCP

The MCP supports byte stream files as a special case of record streams. You define a byte stream file the
same way you define a record stream file, but a few attributes must have specific values.

The following physical attributes are associated with byte streams. These are stored in the disk header for
permanent files.

• FILESTRUCTURE must, of course, have a value of STREAM.

• MAXRECSIZE must have the value 1. Do not specify MINRECSIZE.

• FRAMESIZE must have the value 8, indicating eight-bit character frames.

• BLOCKSTRUCTURE must have the value FIXED, which is the default.

• EXTMODE must be one of the values that is consistent with an 8-bit data frame. EBCDIC is the default, but
ASCII, OCTETSTRING, and other mnemonics for 8-bit national character sets are also allowed.

• FILESTRUCTURE must be NOTRESTRICTED, which is the default. RELATIVE is not permitted for byte
stream files.

Using STREAM Files / 16-7

January, 2002

There are two additional physical attributes which are specifically applicable to byte stream files.

FILECLASS
is a read-only attribute that describes the class of a physical file’s structure. It has three values:

CHARACTERSTREAM —
any disk, printer backup, or CD-ROM file with FILESTRUCTURE=STREAM, MAXRECSIZE=1, and
EXTMODE other than SINGLE. It is also set for certain TCP/IP port files and POSIX FIFO files.

WORDSTREAM —
any disk, printer backup, or CD-ROM file with FILESTRUCTURE=STREAM, MAXRECSIZE=1, and
EXTMODE=SINGLE, plus certain TCP/IP port files.

RECORDORIENTED —
all other physical files.

EXTDELIMITER
specifies the delimiter characters used to separate records or lines in a file. It presently has meaning
only for files with a FILECLASS of CHARACTERSTREAM. The possible values are:

UNSPECIFIED the default
CR carriage-return only
NL new-line (line-feed) only
CRLF carriage-return followed by line-feed
CRCC carriage-return followed by either line-feed or form-feed

The MCP automatically sets EXTDELIMITER to CRCC when a file with the following characteristics is created:

KIND = PRINTER
BACKUPKIND = DISK
FILESTRUCTURE = STREAM

In addition, the MCP places the actual CR, LF, and FF characters in the file, creating a delimited byte stream
(text) file.

You can specify EXTDELIMITER for other types of byte stream files, but the setting is purely advisory. The
Print System consults this attribute when printing byte stream files to determine what kind of line delimiters
and carriage control to look for.

Some logical attributes also affect byte streams. These are not stored in the disk header, but may be speci-
fied at run time before the file is opened.

• Update I/O is not supported for byte streams, so UPDATEFILE must be FALSE, which is the default. You
can open a byte stream in input-output mode and perform mixed reads and writes, but the sequential
rewrite-after-read behavior implied by the UPDATEFILE attribute is not supported.

• When using byte stream files, you almost always want to set ANYSIZEIO to TRUE. The reason for this is
discussed below in the section on ANYSIZEIO.

• DEPENDENTSPECS, DEPENDENTINTMODE, and ADAPTABLE are useful when opening byte streams. These
attributes are also discussed below, under Opening Byte Streams for Input.

Note that, since MAXRECSIZE is always 1, record spanning is never an issue with byte stream files. A program
could, however, issue a logical read or write request that spans an area boundary, and the MCP would per-
form more than one physical I/O to satisfy the request.

The same restrictions apply to byte streams as to record streams. There are also some additional restrictions
for byte streams on how the files can be declared and used.

• First, the physical attributes of the file must include:

FILESTRUCTURE = STREAM
MAXRECSIZE = 1
FRAMESIZE = 8
BLOCKSTRUCTURE = FIXED (the default)
FILEORGANIZATION = NOTRESTRICTED (the default)
EXTMODE must specify an 8-bit representation

16-8 \ Gregory’s ClearPath A-Series Technical Journal

Volume 16.01

• Like record stream files, byte streams cannot be used as CANDE files. CANDE Library/Maintenance
commands and the PRINT command can be used with byte streams, however. Most system utilities do
not yet support byte streams.

• Since a very common use of byte streams is for text files, it would be nice if the MCP provided the
equivalent of a “read line” function for these files as part of Logical I/O. Until recently it didn’t. Starting
with HMP 7.0 (SSR 48.1), however, the MCP provides a new type of virtual file, STREAMIOH, which can
read and write line-oriented byte stream files and present a record-oriented interface to the application.
If you are running on an earlier release, you must parse lines in text files yourself, unless you are using
the I/O libraries for C. Some of the example programs discussed at the end of this article deal with line
parsing in text files.

• MCP application programs are limited to transferring 220-1 (1,048,575) bytes in a single read or write
statement. For most applications, this is not much of a limitation.

Programming for Byte Streams

To open a byte stream file, it must have the minimum physical and logical attribute values discussed above.
You may also want to specify BUFFERSIZE or AREALENGTH, but the MCP defaults for these attributes are
usually adequate.

Using ANYSIZEIO with Byte Streams
As previously mentioned, you almost always want to set the ANYSIZEIO attribute to TRUE when program-
ming for byte stream files. Here’s why.

In the default case, when ANYSIZEIO is FALSE, the number of frames (bytes) transferred between file buff-
ers and your program for reads and writes is limited by the MCP to the minimum of:

• MAXRECSIZE for the file.

• The physical length of the record area in your program.

• The number of frames you request to be transferred in the read or write statement. In Algol programs
using array-row I/O, you specify this value directly in the second parameter of a read or write statement.
In COBOL programs, however, this value is normally the same as the size of the largest record declared
for the file. The section Programming Byte Streams in COBOL, below, describes how to control this
value dynamically.

Since by definition a byte stream file has MAXRECSIZE set to 1, this default situation only allows you to read
or write one byte at a time. In most cases this results in extremely tedious coding and inefficient execution,
due to the overhead of making a separate Logical I/O call for each byte in the file.

The ANYSIZEIO attribute was introduced specifically to address this problem. By setting ANYSIZEIO to TRUE,
you remove the restriction imposed by MAXRECSIZE on the number of frames that can be transferred to and
from your record area by a read or write. Instead, the size of the transfer is limited by the minimum of:

• The physical length of the record area in your program.

• The number of frames you request to be transferred in the read or write statement.

• The number of frames left in the file.

• 220-1 (1,048,575) frames.

This means that the transfer spans record boundaries as necessary to satisfy the minimized length re-
quested.

Therefore, setting ANYSIZEIO to TRUE allows your program to read an arbitrary number of frames (up to 220-
1) from the byte stream with one I/O statement. In addition, since the MCP considers the file to have a rec-
ord length of one frame (one byte), random I/Os can start at any byte position in the file. This allows MCP
applications to read and write arbitrary amounts of data at arbitrary locations in the file, just as for byte
streams under other operating systems.

Using STREAM Files / 16-9

January, 2002

While ANYSIZEIO=TRUE is particularly useful for byte streams, it can be set for any stream file which has the
attributes:

BLOCKSTRUCTURE = FIXED
FILEORGANIZATION = NOTRESTRICTED
UPDATEFILE = FALSE

If these restrictions are not adhered to, the MCP issues an open error.

When ANYSIZEIO is used with record stream files, data transfer always starts at a record boundary and con-
tinues for the number of frames requested, spanning records as necessary. If the transfer does not cover a
whole number of records, the remaining frames in the final record are skipped, since the next I/O must start
its data transfer at the next record boundary. Byte stream files are not subject to frame skipping, because the
records are always exactly one frame in length.

Opening Byte Streams for Input
When reading byte stream files, it’s usually best to open them with DEPENDENTSPECS set to TRUE. This ini-
tializes a number of attributes from settings for the physical file, including FILESTRUCTURE, MAXRECSIZE,
FRAMESIZE, BLOCKSTRUCTURE, FILEORGANIZATION, EXTMODE, FILECLASS, and EXTDELIMITER. You probably
also want to set ANYSIZEIO to TRUE.

You can use the INTMODE and EXTMODE attributes to control character translation. Most MCP applications
are written to process EBCDIC internally. DEPENDENTSPECS sets EXTMODE from the physical file attributes,
but does not affect the INTMODE setting, which defaults to EBCDIC. If INTMODE and EXTMODE are different,
translation can occur.

If you are processing image data, or data with mixed text and binary content, you normally do not want
translation to take place. By setting the DEPENDENTINTMODE attribute to TRUE, you force the MCP to auto-
matically set the INTMODE for the logical file to the EXTMODE of the physical file. This suppresses character
translation.

If you need to have a general-purpose application that can handle any kind of file (traditional, record
stream, or byte stream), the restrictions on ANYSIZEIO can cause a problem. If you set ANYSIZEIO to TRUE
and try to open a file that does not meet the restrictions for ANYSIZEIO, the MCP issues an open error. By
setting the ADAPTABLE attribute to TRUE, however, you cause the MCP to check the compatibility of the file
with ANYSIZEIO. If the file is compatible, the setting of ANYSIZEIO is not altered; if the file is not compati-
ble, the MCP sets ANYSIZEIO to FALSE. This allows the open to succeed, after which your program can in-
terrogate other attributes to determine how to process the file.

There are no differences in the syntax of read statements for byte stream files. You can perform both se-
quential I/O and random I/O using relative record numbers—just keep in mind that for byte stream files,
“record number” means “byte offset into the file.”

Random I/O in COBOL is accomplished using the ACTUAL KEY clause of the SELECT statement. You also
need to declare the record size in a special way to allow ANYSIZEIO to work in a useful manner, as the sec-
tion below on COBOL programming describes.

Opening Byte Streams for Output
When creating a byte stream file, you must explicitly set the FILESTRUCTURE attribute to STREAM, since de-
fault attribute settings result in a traditional MCP file. You should also explicitly set MAXRECSIZE=1 and
FRAMESIZE=8, even if you are programming in COBOL. The required values for the other attributes are the
defaults.

As with input files, you probably want to set ANYSIZEIO=TRUE. You may also want to specify INTMODE and/or
EXTMODE. Setting INTMODE=EBCDIC (the default) and EXTMODE=ASCII allows your program to write EB-
CDIC text, but the text is translated and physically stored as ASCII. If you are writing binary or image data,
it is usually best to set INTMODE and EXTMODE both to OCTETSTRING.

You can set AREALENGTH or AREASIZE when creating a byte stream file, but in most cases the MCP default
of 1,024 sectors will probably be adequate. You should also set a value for AREAS. If you are using the MCP

16-10 \ Gregory’s ClearPath A-Series Technical Journal

Volume 16.01

default for area size, you probably also want to set FLEXIBLE=TRUE, so the number of areas will automati-
cally expand as the file grows.

There are no differences in the syntax of write statements for byte stream files. You can perform both se-
quential I/O and random I/O using relative record numbers, but as with reads, keep in mind that “record
number” means “byte offset into the file.”

Programming Byte Streams in Algol
Access to byte streams in Algol is very straightforward. You specify the attributes you need directly in the
file declaration or through file attribute assignments in WFL, CANDE, or MARC. A typical byte stream file
declaration might look like this:

FILE STREAM (KIND=DISK, FILESTRUCTURE=STREAM,
 MAXRECSIZE=1, FRAMESIZE=8, ANYSIZEIO,
 EXTMODE=ASCII, INTMODE=EBCDIC, FLEXIBLE,
 FILEUSE=IO, TITLE="MY/BYTE/STREAM ON PACK.");

Sequential reads and writes are done in the same way as for traditional files. With ANYSIZEIO set to TRUE,
the record length parameter always specifies the number of 8-bit frames to read or write in the file. Typical
I/O statements follow these examples:

DEFINE MAXCHUNK = 6000 #;
EBCDIC ARRAY REC [0:MAXCHUNK-1];
BOOLEAN RESULT;
INTEGER N, BYTEX, BYTEL;

%-- SEQUENTIAL READ --
RESULT:= READ (STREAM, MAXCHUNK, REC);
BYTEL:= REAL(RESULT).[47:20];

%-- RANDOM WRITE --
RESULT:= WRITE (STREAM[BYTEX], BYTEL, REC[N]);

To perform random I/O, you specify an arithmetic expression in square brackets after the file identifier. For
byte stream files, this is the zero-relative byte offset into the file where the read or write begins transferring
data. Algol also allows you to transfer data into or out of the middle of the record area by using a pointer
expression or an indexed array identifier.

Algol read and write statements return a Boolean result value that has the same format as the STATE attrib-
ute. Some useful fields in this word result are:

Bit Field Meaning

[47:20] the number of frames (bytes) actually read or written

[7:1] parity data transfer error

[9:1] end-of-file encountered

[4:1] length or size error (sometimes called “data error”)

[0:1] some exception occurred (this bit determines the result word’s TRUE or FALSE value)

Programming Byte Streams in COBOL
Programming for byte stream files in COBOL-74 or -85 is somewhat more cumbersome than Algol, but all
of the facilities are available. The coding in both COBOL dialects is identical.

In the SELECT statement, the file should have ORGANIZATION SEQUENTIAL (the default) and an ACCESS
MODE of either SEQUENTIAL (again, the default) or RANDOM. If you are doing random I/O or using SEEK
statements, you need to include an ACTUAL KEY clause referencing a numeric data item in WORKING-
STORAGE. Keys defined as USAGE BINARY or REAL are more efficient than ones defined as DISPLAY or COMP.
Here is an example of a declaration of a random file.

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 FILE-CONTROL.
 SELECT BSF-BYTE-STREAM
 ASSIGN TO DISK

Using STREAM Files / 16-11

January, 2002

 ORGANIZATION SEQUENTIAL
 ACCESS MODE RANDOM
 ACTUAL KEY W-BSF-KEY
 FILE STATUS WBS-FILE-STATUS.

The FILE STATUS clause is not necessary, but it is a useful and convenient way to get detailed I/O results in
a COBOL program. It is a two-character value declared in WORKING-STORAGE.

When working with byte stream files, you frequently need to be able to read and write variable length
strings of data and control the length programmatically. In order to do that, you must declare the COBOL
FD in a particular way:

• Specify a RECORD CONTAINS clause with a range of 1 TO n, where n is the maximum size of the string
you need to read or write. The clause must also have a DEPENDING ON phrase, naming a numeric data
item in WORKING-STORAGE. The value of this item controls the number of frames (bytes) read or written
by each I/O statement for the file. As for ACTUAL KEY items, it is more efficient to declare this length
item as USAGE BINARY or REAL. In COBOL-85 you can alternatively specify a RECORD IS VARYING
clause with a DEPENDING ON phrase.

• Specify the stream-related attributes using VALUE OF clauses in the FD. Alternatively, you can specify
these externally using file attribute assignments in WFL, CANDE, or MARC. When reading existing
files, you can usually specify just VALUE OF DEPENDENTSPECS IS TRUE and VALUE OF ANYSIZEIO IS
TRUE.

• Declare at least one record area for the file that is as large or larger than the maximum size specified in
the RECORD CONTAINS or RECORD IS VARYING clause. COBOL allocates the record area in your pro-
gram based on the longest record area you define for the file.

Here is an example of typical DATA DIVISION coding that works for both COBOL-74 and COBOL-85.

 DATA DIVISION.
 FILE SECTION.
 FD BSF-BYTE-STREAM
 RECORD CONTAINS 1 TO 8192 CHARACTERS
 DEPENDING ON W-BSF-SIZE
 VALUE OF
 FILESTRUCTURE IS STREAM
 MAXRECSIZE IS 1
 BLOCKSTRUCTURE IS FIXED
 FRAMESIZE IS 8
 EXTMODE IS ASCII
 ANYSIZEIO IS TRUE
 FLEXIBLE IS TRUE.
 01 BSF-REC.
 05 FILLER PIC X(8192).

 WORKING-STORAGE SECTION.
 77 W-BSF-SIZE REAL.
 77 W-BSF-KEY REAL.
 01 WBS-BYTE-STREAM-INFO.
 05 WBS-FILE-STATUS.
 10 WBS-FILE-STATUS-1 PIC X(1).
 10 WBS-FILE-STATUS-2 PIC X(1).

To read or write a string of bytes in COBOL, you first move the length of the string you want to transfer to
the data item specified in the DEPENDING ON phrase of the RECORD CONTAINS or RECORD IS VARYING
clause for the file, thus:

 PROCEDURE DIVISION.

 OPEN I-O BSF-BYTE-STREAM.

* -- SEQUENTIAL READ
 MOVE 4000 TO W-BSF-SIZE.
 READ BSF-BYTE-STREAM AT END ...

* -- RANDOM WRITE --
 COMPUTE W-BSF-SIZE = W-INDEX + 1.
 MOVE W-OFFSET TO W-BSF-KEY.
 WRITE BSF-REC INVALID KEY ...

16-12 \ Gregory’s ClearPath A-Series Technical Journal

Volume 16.01

It’s a good practice to reestablish this length value before each I/O statement, even if you are always reading
strings of the same size. The reason for this is that the DEPENDING ON data item is updated after each I/O
with the actual length of data that was transferred between your record area and the file buffers.

If you are reading or writing randomly, you may also need to place the relative record number (byte offset)
where the data is to be read or written into the data item specified in the ACTUAL KEY clause. Note that for
COBOL this is a one-relative byte offset into the file, since COBOL numbers records starting at 1.

Determining Actual Length
One thing to keep in mind when accessing byte stream files is that you may not get all the bytes you asked
for. This happens when you read the last chunk of data at the end of the file. You may have asked for, say,
3,000 bytes, but perhaps there were only 1,255 left in the file before the EOF. The MCP will not read be-
yond the current end of file, and only transfers data to your program up to that point.

There are several ways to determine how may bytes were actually transferred between the file buffer and
your program’s record area.

• In COBOL, if you declared the file with a RECORDS CONTAINS … DEPENDING ON clause or a RECORD IS
VARYING … DEPENDING ON clause, the data item referenced by the DEPENDING ON phrase is updated
after each read or write with the actual number of frames transferred. This is usually the most conven-
ient method.

• As mentioned earlier, the STATE attribute holds the result of the last I/O operation in the form of a bit-
packed word. Bits [47:20] in that word indicate the actual number of frames transferred. The first ex-
ample below shows how you can extract these bits into a COBOL data item. Note that the partial word
notation in square brackets works only with word-oriented data items, such as USAGE REAL and BINARY.

• The CURRENTRECORDLENGTH attribute indicates directly how many frames were transferred by the last
I/O operation.

The following example shows these last two methods.

 77 W-STATE REAL.
 77 W-LENGTH PIC S9(11) BINARY.

* -- STATE ATTRIBUTE METHOD --
 MOVE ATTRIBUTE STATE OF BSF-BYTE-STREAM TO W-STATE.
 MOVE ZERO TO W-LENGTH.
 MOVE W-STATE TO W-LENGTH [47:19:20].

* -- CURRENTRECORDLENGTH ATTRIBUTE METHOD --
 MOVE ATTRIBUTE CURRENTRECORDLENGTH OF BSF-BYTE-STREAM TO W-LENGTH.

The last two methods have the disadvantage that you must get their value from an attribute at run time. This
involves making a procedure call to the MCP after each I/O statement. While this is a relatively efficient
operation, there is some overhead to it, especially if you are doing it thousands of times. Algol provides a
more efficient mechanism by returning a copy of the STATE attribute as the result of each read or write
statement.

In COBOL-85, a mechanism equivalent to the one for Algol is provided by the MCPRESULTVALUE special
register. After each I/O statement, the COBOL-85 run time stores a copy of the STATE attribute in this reg-
ister, much the same way it stores DMSII results in the DMSTATUS special register. Accessing MCPRESULT-
VALUE is many times more efficient than obtaining an attribute value. The actual length read or written can
be obtained from this register in the same way as for the STATE attribute, thus:

MOVE ZERO TO W-LENGTH.
MOVE MCPRESULTVALUE TO W-LENGTH [47:19:20].

MCP Tools for Byte Streams
While MCP support for byte streams is not universal, and most of the utility programs from Unisys do not
currently support them, there are a number of facilities and tools for the MCP besides Logical I/O that you
can use to generate and access byte stream files.

Using STREAM Files / 16-13

January, 2002

Client Access Services

Client Access Services can access and transfer both traditional and byte stream files between MCP shares
and Microsoft Networking clients. The Windows Explorer Extensions add-in, the MCPCOPY command line
utility, and several types of named pipes can convert byte stream files to and from traditional MCP file for-
mats.

With Client Access Services, you can both transfer and directly access files on MCP shares. Since Windows
does not support record-oriented files, the MCP files appear to Windows applications as byte streams hav-
ing carriage-return/line-feed record delimiters.

When transferring a file to the MCP environment, you can use either Windows Explorer, the MCPCOPY
command line utility, or a Windows-based application that supports Universal Naming Convention (UNC)
file names. If what you want to store in the MCP environment is a byte stream file, do not use the Unisys
Explorer Extensions add-in that is activated by right-click-dragging a file to an MCP share, as that creates an
MCP file in traditional format. Instead, use a left-click-drag.

The Unisys MCPCOPY utility can transfer files to the MCP as byte streams or as record-oriented files based on
command line switches. In general, to get a byte stream file stored in the MCP environment, do not specify
the /Z:SR, /R, /D, /B, /U, /T, /W, or /F switches for MCPCOPY.

There are several Windows APIs and tools that support reading and writing to disk shares with UNC file
names, including the TYPE and MORE commands, NotePad, and the FileSystemObject component available
in any environment that supports Microsoft COM objects, including Visual Basic and VBScript. A UNC file
name has the general form

\\server\share\pathname

instead of the drive-letter:pathname form.

Note that there are a number of named pipes supported by Client Access Services that have UNC names
starting with \\server\PIPE\… These pipes either convert between Windows byte streams and MCP tradi-
tional files or connect to CCF or port files for MCP applications. Do not use these if you want to transfer
byte stream files to the MCP and have them stored as byte streams.

The File Redirector

The File Redirector, which was first introduced in HMP 5.0, is a complement to Client Access Services. It
allows MCP applications to access disk, CD-ROM, and printer shares on a remote system using Microsoft
Networking (SMB) protocols. Using the Redirector you can directly read and write files on these shares—
no separate file transfer process is necessary. You must program for these files in your MCP application as
byte stream files.

The Redirector is implemented as an instance of a new kind of file, KIND=VIRTUAL. The semantics of virtual
files are not implemented within the Logical I/O subsystem of the MCP. Instead, the semantics are imple-
mented by a library program, called an IOHANDLER, that Logical I/O calls in response to standard
open/close, read/write statements in an application. The interface for an IOHANDLER is documented in
the I/O Subsystem Programming Guide. You can even write your own IOHANDLER if you have a unique
input/output processing need.

There are a number of new attributes that support the use of virtual files. Most of these (e.g., IOHLIBAC-
CESS, IOHTITLE, IOHFUNCTIONNAME) are used to establish the library linkage between Logical I/O and the
appropriate IOHANDLER when a file is opened. There is also a string parameter, IOHSTRING, that is used
to pass file-specific options from an application program to the IOHANDLER library.

The File Redirector is implemented by a Unisys-supplied IOHANDLER library, SYSTEM/REDIRSUPPORT.
There is a new Boolean file attribute, REDIRECTION, that can be used as a shorthand to configure the IOH
library linkage attributes for REDIRESUPPORT. Therefore, to use the Redirector, you have to specify the at-
tributes you would normally need to read or write a byte stream file, plus

• REDIRECTION = TRUE

• Some redirection-specific options in IOHSTRING

16-14 \ Gregory’s ClearPath A-Series Technical Journal

Volume 16.01

• Optionally, a specially formatted TITLE or LTITLE string that represents the UNC name for the file on
the remote system.

One of the nice things about the Redirector is that if your program already understands how to read or write
byte stream files, you can simply use file attribute assignments to have it work with files on remote shares.

The following WFL snippet shows a straightforward example of the attributes needed to access a file called
MiscellaneousFiles\demo.txt from the share MYSHARE on the server NTSERV. The first set of attributes
are standard byte stream attributes. The second set invoke the Redirector. Note that the long filename at-
tribute LTITLE must be used instead of TITLE if any nodes of the name contain more than 17 characters.

RUN OBJECT/MY/STREAM/PROG;
 FILE SHARE (
 %-- BYTE STREAM ATTRIBUTES --
 FILESTRUCTURE = STREAM, MAXRECSIZE = 1, FRAMESIZE = 8,
 ANYSIZEIO = TRUE, EXTMODE = ASCII, FILEUSE = IO,
 %-- FILE REDIRECTION ATTRIBUTES --
 REDIRECTION = TRUE,
 IOHSTRING = "CREDENTIALS=username/pw",
 LTITLE = *UNC/NTSERV/MYSHARE/"MiscellaneousFiles"/"demo.txt");

The *UNC prefix on the file name is a special node recognized by the Redirector. It indicates, in place of the
standard double backslash (\\), that the rest of the name is in UNC format. Note that forward slashes are
used instead of backslashes in these MCP title strings.

The IOHSTRING attribute can specify a number of options for the connection to the remote server and share.
In addition to CREDENTIALS, keywords which can be specified in this string include:

Keyword Meaning

DOMAINNAME DNS name for the remote server

IPADDRESS IP address for the remote server

SERVERNAME Microsoft Networking host name for the remote server

SHARENAME Name of the share on the remote server

USERDOMAIN Domain under which user credentials will be authenticated

TIMEOUT Timeout value (in seconds) for remote server connections to complete

SMBTRACE Invokes SMB diagnostics (true/false)

Instead of using the *UNC form of the TITLE attribute, you can identify the server by DOMAINNAME,
IPADDRESS, or SERVERNAME, and the share by the SHARENAME options in IOHSTRING. The TITLE or LTITLE
attribute would then specify just the pathname after the share name.

Since specifying CREDENTIALS in the IOHSTRING potentially exposes passwords, the Redirector can use cre-
dentials files created by the Unisys utility program *SYSTEM/NXSERVICES/MAKECREDENTIALS. This utility
generates an encrypted file from a host name (which can be a domain name, IP address or server name), a
username, a password, and an optional Windows user-domain name. The file is stored under your usercode
as NXSERVICES/CREDENTIALS/hostID. The Redirector automatically accesses this credentials file under
your usercode if CREDENTIALS is not specified in the IOHSTRING.

For more information on the File Redirector, see the I/O Subsystem Programming Guide.

FTP

FTP can be used to transfer files between the MCP environment and virtually any other system which sup-
ports a minimal implementation of FTP. Since the capabilities of file systems vary widely among systems,
FTP accomplishes this nearly universal interchange by reducing the files to a simple set of common char-
acteristics. It leaves to each endpoint of the transfer the task of converting this simple representation of files
to a form that is meaningful for that endpoint’s environment.

FTP characterizes file transfers in three ways:

Structure
indicates the file can be transferred as a single entity (FILE mode) or as delimited records (RECORD
mode). In WFL, this characteristic is specified with the FTPSTRUCTURE transform attribute, having val

Using STREAM Files / 16-15

January, 2002

ues of FTPFILE and FTPRECORD. In the interactive FTP client, this characteristic is controlled by the
STRUCT command.

Representation
indicates the data can be encoded in ASCII or EBCDIC, or it can be unencoded. In the unencoded, or
binary form, the data is considered simply to be a stream of 8-bit bytes (octets). In WFL, this charac-
teristic is specified with the FTPTYPE transform attribute, having values of ASCIINONPRINT, EBCDICNON-
PRINT, and IMAGE (LOCAL 8 is a synonym for IMAGE). In the interactive FTP client, this characteristic is
controlled by the ASCII, BINARY, IMAGE, EBCDIC, and TYPE commands.

Transfer Mode
indicates how the data is physically transferred. The FTP standard defines this as a third characteristic,
but the MCP currently supports only one if its modes, STREAM. There is no transform attribute corre-
sponding to this characteristic.

To convert the standard FTP data streams to the Logical I/O subsystem, the MCP implementation of FTP
supports a mapping process during the transfer. Mapping can translate the simplified characteristics of FTP
data to a wide variety of the richer file structures available under the MCP. Specifically, the mapping proc-
ess can convert between byte stream files from other systems and either traditional or byte stream formats
under the MCP.

Inbound FTP Transfers
When you transfer files to the MCP environment with FTP, you want to receive the files in either tradi-
tional or byte stream format. If byte streams are what you want, you essentially bypass FTP’s mapping proc-
ess, except possibly for character translation.

By specifying the RAW mapping style for an inbound transfer, you are guaranteed of getting a byte stream file
stored in the MCP environment. The bytes are stored exactly as sent by the remote system. No character
translation is available with RAW. The file is stored with an EXTMODE of OCTETSTRING.

The TEXT mapping style always stores a traditional MCP file, so it is not discussed further here.

The BINARY mapping style may or may not store a byte stream file in the MCP environment, depending on
the parameters specified for the transfer.

• If the Structure characteristic for the transfer is FILE and no RECORDLENGTH option is specified in the
mapping parameters, FTP stores a byte stream file. With this type of inbound transfer, character trans-
lation can occur.

• If Structure is RECORD or a RECORDLENGTH parameter is specified, FTP stores a file in the traditional
(blocked) format.

Note that the characteristics of an FTP transfer can be affected by two external sources:

• If the transfer is remotely initiated, the originator has control over the Structure and Representation
characteristics of the transfer.

• FTP supports default settings through a hierarchy of configuration files. You may need to override these
defaults on a case-by-case basis.

Outbound FTP Transfers
For outbound transfers, FTP can send the file with either the FILE or RECORD structure. If you are starting
with an MCP byte stream file, FTP always sends it with a structure of FILE, since the file is not record ori-
ented to begin with.

FTP output mapping supports two modes: a default mapping style and the UNEDITED style.

The default style is typically used with traditional or record-oriented files, and is usually the one to use if you
want to transfer text. With this style, character translation can occur, as well as selected trimming of trailing
blanks, sequence numbers, and identification (patchmark) fields.

16-16 \ Gregory’s ClearPath A-Series Technical Journal

Volume 16.01

The UNEDITED style for output is the complement of the RAW style for input. It causes the file to be trans-
ferred as is, without mapping or character translation. This is the style to use if you need to transfer a tradi-
tional MCP file as a binary data stream without record delimiters.

MCP Utilities and Conversion Facilities

Most MCP utility programs do not directly support byte stream files. The new STREAMIOH virtual file han-
dler in HMP 7.0 will enable some of the standard utilities to be used with byte streams through file attribute
assignment.

Utility Programs for Byte Streams
Even without STREAMIOH, there are still some standard MCP utilities that support byte streams.

• SYSTEM/EDITOR (U ED) can read, edit, and convert byte stream files. The functionality of this program
is oriented primarily toward program symbolic files, so it may not be suitable for dealing with data files
having very long records.

• The Print System can generate printer backup files in byte stream format as well as standard backup file
format. It can also print byte stream files from other systems, obeying line delimiter conventions and
form feeds. The Print System determines the line delimiter from the EXTDELIMITER attribute, which
can be set with the WFL ALTER statement.

• SYSTEM/DUMPALL can read and write byte stream files, but the functionality is limited. DUMPALL is
driven largely by file attributes. Since MAXRECSIZE is always 1 for byte stream files, listing such a file
with DUMPALL results in a tabulation of one-character records, which is not very useful. Copying byte
streams with DUMPALL is not very efficient, since each byte in the file is treated as a separate logical rec-
ord, resulting in a separate read and write for every record in the file.

Byte Stream Conversion Facilities
Sometimes you have a byte stream file in the MCP environment and need to process it using an application
that supports only traditional files. In these cases you have two choices: write a program yourself to process
the data, or convert the byte stream to a traditional file format.

By writing your own program, you can accomplish any kind of conversion you want, and the process will
generally be quite efficient in the MCP environment. The problem with this approach, of course, is the time
and effort you need to spend designing and coding an appropriate program. Instead, there are a number of
ways to convert byte streams to traditional files using standard MCP facilities.

Client Access Services (NX/Services) offers a number byte stream conversion capabilities, but only when
transferring files to or from an MCP disk share. To use these to convert a file that is already in the MCP
environment, you would have to first copy the file to an external system, then copy it back to the MCP, or
copy it between two MCP shares. In either case, all of the data being converted must travel to an external
system and back to the MCP over your network. There is a fair amount of overhead in doing this, but it’s
fine for a quick-and-dirty solution. The two tools you can use are:

Windows Explorer Extensions
This is a Unisys add-in you install in your Windows environment. It is activated when you right-click-
drag files to an MCP share in Windows Explorer. A pop-up menu gives you a number of choices for
source file formats, data file record sizes, and file names.

MCPCOPY
This is a command line utility that also runs in the Windows environment. It is installed automatically in
your WINDOWS or WINNT directory when you install the Explorer Extensions add-in. You can run this
program directly, or use it in “.bat” files and Windows Scripting Host (WSH) scripts. Conversion for-
matting is controlled by a number of parameter switches, which are documented in the help file for the
Explorer Extensions. This help file is also on the documentation CD-ROM.

As mentioned above, the SYSTEM/EDITOR utility can read and write byte stream files and convert to and
from traditional symbol file formats. When using EDITOR from CANDE with byte streams, you need to ini-
tiate it using its shell program, OBJECT/EDIT (e.g., U EDIT <file name>).

Using STREAM Files / 16-17

January, 2002

FTP has extensive file conversion facilities, and can map byte stream files into a wide variety of traditional
MCP file formats, including symbol files, fixed length data files, and variable length data files. The following
WFL job shows an example using FTP to convert files locally.

? BEGIN JOB BYTESTREAM/CONVERT;
USER = uc/pw;

COPY [FTP]
 'MY/BYTE/STREAM ON DEV' AS MY/FLAT/FILE
 (FTPTYPE=ASCIINONPRINT, FTPSITE=
 "MAPIN TEXT(FILEKIND=COBOL85SYMBOL, RECORDLENGTH=84, " &
 "BLOCKINGFACTOR=30, FOLD=SPACE, ADD=NONE, TAB=INTERVAL 8)")
FROM DISK(HOSTNAME=localhost, USERCODE=uc/pw)
TO DEV(DISK);
? END JOB

This converts a byte stream to a traditional file locally on the host using FTP. You don’t even have to be
connected to a network in order to use FTP this way, but both the TCP/IP network provider and the FTP
DSS must be running.

The trick here is that you are using FTP to transfer the file to and from the same host. That’s a pretty ineffi-
cient way to copy a file, but in doing so you can take advantage of FTP’s extensive input data mapping capa-
bility. Input mapping allows FTP to convert byte streams into a number of traditional MCP file formats,
including all of the symbol file formats supported by CANDE, and most common data file formats.

This example shows how to import a COBOL-85 source file in byte stream format and convert it to a
FILEKIND of COBOL85SYMBOL with the correct record size and blocking. The RECORDLENGTH and BLOCKING-
FACTOR options are not really needed here, since FTP uses the correct sizes by default when the FILEKIND
for a symbol file is specified.

In addition, specifying:

FOLD=SPACE
folds lines at a space (i.e., between words) if a line is too long for a standard COBOL record.

ADD=NONE
assumes the byte stream already has sequence numbers in columns 1-6. Without this option, FTP
would insert sequence numbers in front of the text.

TAB=INTERVAL 8
expands tabs to increments of eight spaces.

Note that the mapping options BLOCKINGFACTOR and ADD are new with HMP 6.0.

To adapt this example to your own use, you need to change the source and destination file names, replace
“localhost” by the host name of your MCP system, supply an appropriate usercode and password in place
of “uc/pw”, and change the destination family name (“DEV”) to one for your system. You do not need a
REMOTEUSER specification in the USERDATAFILE to use FTP locally in this way.

There are a number of options for FTP input mapping other than those shown here. For more information
on FTP input and output mapping, see the TCP/IP Distributed Systems Services Operations Guide.

Examples
I have written a few example programs that illustrate the basic techniques for reading and writing sequential
byte stream files.

There are two examples written in COBOL-74. STREAMLIST reads a byte stream as a text file and lists it to a
standard printer file, adding page headings and line numbers, and folding lines that are too long to fit on a
single print line. STREAMCOPY copies a traditional MCP file as a byte stream file, trimming trailing blanks
and appending CR-LF delimiters after each record. Both of these programs also compile with COBOL-85.

There is also a COBOL-85 version of STREAMLIST. It is functionally equivalent to the COBOL-74 version,
but uses some of the nicer control structures available in the 1985 standard.

Finally, there is an Algol version of STREAMLIST as well. It is also functionally equivalent to the COBOL-74
version.

16-18 \ Gregory’s ClearPath A-Series Technical Journal

Volume 16.01

You can download the source for all of these examples from our web site at:

http://www.digm.com/UNITE/2001

This article is based on a presentation I gave at the 2001 Fall UNITE conference in Phoenix. You can also
download a copy of that presentation in PowerPoint 95 format from the site.

These example programs are also available at the Gregory Publishing download area in file jan2002.zip.

Sources for More Information
A number of Unisys documents contain information relevant to byte stream files in the MCP environment.
All of these references are relative to the HMP 6.0 release, and all are on the Product Information CD-
ROM.

• The I/O Subsystem Programming Guide has a wealth of information on programming for various types
of files. See Sections 1 and 2 for general information on byte stream files, Section 29 for a discussion of
Virtual files, and Section 30 for information on the Redirector. The new STREAMIOH virtual file handler
is described in Section 31 of the HMP 7.0 edition of this document.

• The File Attributes Programming Reference Manual is a dictionary of file attributes and their permissi-
ble settings. This is the best source if you know the attribute you need to use but want detailed infor-
mation on its values and effects.

• The Client/Server Applications Development Guide is a standard Windows help file. It is the primary
resource for information on MCP file shares and named pipes.

• The Unisys Explorer Extensions add-in comes with another Windows help file which describes how to
use the extensions. It also contains documentation for the MCPCOPY command line utility. This file is in-
stalled automatically when you install the extensions.

• The TCP/IP Distributed Systems Services Operations Guide contains complete information on several
TCP/IP components, including FTP. Sections 2 through 8 are the best resource for information on FTP
and its input and output mapping capabilities.

Acknowledgement
The author thanks David Grubb for his careful review of this article and his insightful comments on it.

Paul Kimpel has been working with MCP-based systems for more than 30 years, starting with the B5500 in
college. He began his career at Burroughs in 1970 on the then-new B6500. After leaving Burroughs in the
mid ‘70s, he worked for a number of Burroughs and IBM customers before starting his own business in
1979. That business, now Paradigm Corporation, specializes in consulting, training, and custom software
development for ClearPath MCP systems. Paul’s main interests are in the areas of data base and transaction
processing system design, web enabling MCP applications, TCP/IP networking, and object oriented envi-
ronments. His email address is paul.kimpel@digm.com.

	Using Stream Files
	About Stream Files
	Streams in the MCP
	Stream File Structures

	Record Streams
	Configuring Disk Files
	Configuring Stream Files
	Programming for Record Streams

	Byte Streams
	Byte Stream Characteristics
	Byte Streams in the MCP
	Programming for Byte Streams
	Using ANYSIZEIO with Byte Streams
	Opening Byte Streams for Input
	Opening Byte Streams for Output
	Programming Byte Streams in Algol
	Programming Byte Streams in COBOL
	Determining Actual Length

	MCP Tools for Byte Streams
	Client Access Services
	The File Redirector
	FTP
	Inbound FTP Transfers
	Outbound FTP Transfers

	MCP Utilities and Conversion Facilities
	Utility Programs for Byte Streams
	Byte Stream Conversion Facilities

	Examples
	Sources for More Information
	Acknowledgement

