
Using the Redirector and StreamIOH

2007 UNITE MCP-4026 1

Using the Redirector
and StreamIOH

Using the RedirectorUsing the Redirector
and StreamIOHand StreamIOH

Paul Kimpel
2007 UNITE Conference

Session MCP-4026

Wednesday, 12 September 2007, 2:45 p.m.

Copyright © 2007, All Rights Reserved Paradigm Corporation

Using the Redirector and StreamIOH

2007 UNITE Conference
Valley Forge, Pennsylvania

Session MCP-4026

Wednesday, 12 September 2007, 2:45 p.m.

Paul Kimpel

Paradigm Corporation
Poway, California

http://www.digm.com

e-mail: paul.kimpel@digm.com

Copyright © 2007, Paradigm Corporation

Reproduction permitted provided this copyright notice is preserved
and appropriate credit is given in derivative materials.

http://www.digm.com

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 2

MCP-4026ParadigmParadigmParadigm 2

Presentation TopicsPresentation Topics

Background
File transfer vs. file access
File structures
Network shares

The Redirector
Using the Redirector
Security and user authentication
Directory operations
Printer Shares and the PCDRIVER utility

StreamIOH
Accessing byte-stream files within the MCP
Accessing text files on network shares

Today I am going to discuss two facilities in the MCP that I think are really interesting and fun, and that I find
I am using more and more all the time – the Redirector and StreamIOH.

• The Redirector allows MCP applications to access files directly on shared network directories.

• StreamIOH allows MCP applications to read and write line-delimited text files as if they were
traditional record-oriented files. StreamIOH can be used by itself for MCP-resident text files, or in
conjunction with the Redirector for text files on network shares.

I will begin by discussing some background information – a brief discussion on methods for file transfer vs.
those for directly accessing files, an overview of MCP file structures and how they relate to file structures on
other systems, and a similarly brief introduction to the concepts behind shared network resources.

The next part of the presentation will focus on the Redirector – how it is implemented, how you use it with
with MCP applications, how you manage security and authentication with remote servers, how you can
access and manipulate remote directories or folders, how to use the Redirector with shared network printers,
and a brief overview of a Redirector utility program.

The final part of the presentation will discuss StreamIOH – how it is implemented, how you use it with MCP
applications, how it can be used to access text files stored in the MCP file system, and how it can be used to
access text files stored on network shares.

I have a few examples and demonstrations to share, and at the end is a list of references where you can learn
more about both of these facilities.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 3

Some BackgroundSome Background

To begin, I want to cover some background topics that are important in understanding how the Redirector and
StreamIOH fit into the MCP environment and can work with typical MCP applications.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 4

MCP-4026ParadigmParadigmParadigm 4

File Transfer vs. File AccessFile Transfer vs. File Access

MCP has several file transfer mechanisms
BNA File Transfer
BNA NFT
FTP
OSI-FTAM

Redirector is a file access mechanism
File is not just copied to/from the MCP system
MCP applications directly read/write the file on the
network share

The first issue is to distinguish between file transfer mechanisms and file access mechanisms.

The MCP supports a number of file transfer mechanisms. The first of these were implemented as part of
BNA. Along with TCP/IP, we also got FTP and, indirectly, OSI-FTAM. The purpose of these file transfer
mechanisms is to move a file from one system to another system over a network, possibly doing some light
conversion along the way, such as character translation or record-level formatting.

By way of contrast, a file access mechanism is one that does not transfer a file from one system to another. It
allows an application on the local system to access the file directly on the remote system. Reads and writes on
the client system take place as soon as possible on the remote server, allowing for any network delay and
caching that may be taking place. You can use a file access mechanism to implement a file transfer system,
but that is just one example (and a fairly degenerate one) of how file access can be applied.

The Redirector, which we will talk about in more detail, is a file access mechanism. It allows MCP
application programs to read and write files directly on remote servers. The file never need be present on the
MCP system.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 5

MCP-4026ParadigmParadigmParadigm 5

File StructuresFile Structures

MCP supports three file structures
ALIGNED180 (default, most common)
BLOCKED
STREAM

MCP applications traditionally use
record-oriented I/O

File system understands internal file record/block
structure
Programs read/write whole records
Rich mechanism for specifying logical and physical file
characteristics through attributes

Before we can talk about how MCP applications can access files on remote systems, we need to talk about
some concepts of the MCP file system. One of the primary concepts is that of file structure, as implemented
by the FILESTRUCTURE attribute. This attribute currently has three mnemonic values:

• ALIGNED180 – This is the default, and by far most common value. It implies that disk files will be
structured using fixed-length blocks, and that the blocks will always be aligned on 180-sector
boundaries. Whether the disk has physical 180-byte sectors (such disks have not been manufactured for
years now), or one of the virtual sectoring technologies used with modern disks (e.g., VSS1, VSS2, or
the VMMCP's Logical Disk files), block alignment is always done on these traditional sector boundaries.
The size of the block is also the size of physical I/O transfers to and from the disk. Records within the
blocks of ALIGNED180 files may be fixed or variable length, but a record is always wholly contained
in a block. Files of this structure may also be "reblocked" – opened with a different block size than used
when the file was created, provided the new blocksize is a multiple of the disk sector size.

• BLOCKED – This is similar to ALIGNED180, in that a file is composed of fixed-length blocks aligned
on physical disk sectors, but the sector size is not constrained to 180 bytes. Files with this structure may
not be "reblocked."

• STREAM – Files with this structure are not composed of blocks. Records are simply written head-to-tail
without any wasted space. Records may span physical disk I/Os, and even may span physical disk area
allocations. There is a special case of stream files, termed "byte stream" files, which I will discuss in a
minute.

Although the BLOCKED and STREAM file structures have been available since Mark 3.9 (ca. 1990), most
MCP applications today still use the traditional ALIGNED180 structure. This also implies that these
applications use record-oriented I/O. The file system stores information about record and block sizes in the
disk directory, and the MCP Logical I/O module uses that information to isolate programs from the physical
aspects of blocking, unblocking, and locating individual records in allocated disk areas. Programs simply read
and write whole records. The MCP provides a rich mechanism for configuring record-oriented files and
interrogating their attributes through the use of file attributes. These attributes are essentially properties of a
"logical file" object.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 6

MCP-4026ParadigmParadigmParadigm 6

File Structures, continuedFile Structures, continued

Other systems use a much simpler model
Files are simply "streams" of bytes
File system knows nothing about internal file structure
Basically two kinds – binary data and text

Text (delimited) stream files
Traditionally encoded in ASCII or ISO 8859
Partitioned into "lines" by delimiter characters
– DOS/Windows: CR-LF pair
– Unix/Linux/Mac: LF (called NL or "newline")
– CTOS/BTOS: LF
– Mac (pre-OS/X): CR

Most other types of systems, especially non-mainframe systems, use a much simpler file model. Files are
structured simply as linear sequences ("streams") of bytes. There are no record or block structures, and the
file system knows nothing about the internal structure of files. Internal structure is something that is left
entirely up to the application accessing the file. There are basically two general types of files – binary data
and text – but the distinction is usually left up to the application, not the file system.

Text files are a special, but very common, case of stream files. These files are typically encoded in ASCII or
one of the nationalized variants of the ISO 8859 standard. The file is logically partitioned into variable-length
"lines." Lines are delimited from each other by certain characters. The delimiter characters vary by operating
system, with the most common choices being line-feed (ASCII hex 0A, often called "new-line" or NL) for
Unix/Linux systems, and the carriage-return/line-feed pair (ASCII hex 0D0A) for Microsoft Windows/DOS
systems. Carriage-return alone is used by some systems, particularly pre-OS/X Apple Macintosh systems.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 7

MCP-4026ParadigmParadigmParadigm 7

MCP Stream FilesMCP Stream Files

MCP Logical I/O supports stream files
Record streams
Byte streams

Byte-stream files correspond to the unstructured
stream files of other systems

Therefore, MCP apps must access files on
network shares as byte streams

As mentioned earlier, the MCP supports the STREAM file structure. There are two forms of stream files,
record streams and byte streams, with byte streams being a special case of record streams. These byte-stream
files correspond to the unstructured files on other systems, particularly Windows and Unix/Linux systems.

Therefore, when MCP applications access files directly on remote systems, they must do so as byte-stream
files and program for them accordingly. From this point on in the presentation, when I mention "streams" or
"stream files," I will mean byte streams, as record streams are an MCP-specific concept.

There is a way around this requirement that MCP applications access remote files as streams, as we will see
when we get to the discussion on StreamIOH.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 8

MCP-4026ParadigmParadigmParadigm 8

Declaring MCP Byte Stream FilesDeclaring MCP Byte Stream Files

Required attributes
FILESTRUCTURE = STREAM

FILEORGANIZATION = NOTRESTRICTED (default)
BLOCKSTRUCTURE = FIXED (default)
MAXRECSIZE = 1

FRAMESIZE = 8

EXTMODE = (any 8-bit representation)
UPDATEFILE = FALSE (default)
Do not specify BLOCKSIZE

Almost always specified
ANYSIZEIO = TRUE

AREAS, AREALENGTH, FLEXIBLE

To declare a byte stream file in an MCP application, you must specify certain attributes with certain values.
This is true whether you need to access a stream file that is stored within the MCP file system, or on on a
remote system.

• FILESTRUCTURE must have the value STREAM.

• FILEORGANIZATION must be NOTRESTRICTED. This is the default, and implies a "flat" file.
KEYEDIO, KEYEDIOII, and RELATIVE files cannot be stream files.

• BLOCKSTRUCTURE must be FIXED. This is also the default.

• MAXRECSIZE must have the value 1. This may seem odd, but we will see shortly that this makes a lot
of sense, and enables the MCP to treat byte-stream files much the same way they are treated on other
systems.

• FRAMESIZE must have the value 8. Along with the MAXRECSIZE setting, this implies each record is a
single eight-bit byte.

• EXTMODE must be set to one of the mnemonic values for an eight-bit character representation. Common
values are ASCII, EBCDIC, and OCTETSTREAM.

• UPDATEFILE must have the value FALSE. This is also the default.

• BLOCKSIZE should not be specified at all, as stream files do not have blocks. Any BLOCKSIZE
specified will be ignored. Any attempt to interrogate BLOCKSIZE for a stream file will result in a non-
fatal attribute error.

In addition to these required attributes, you almost always want to specify ANYSIZEIO=TRUE. I will discuss
why on the next slide.

If you are creating a file, you may also want to specify the AREAS, AREASIZE, and/or FLEXIBLE attributes
to configure the total size and storage allocation attributes of the file.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 9

MCP-4026ParadigmParadigmParadigm 9

Reading/Writing Byte Stream FilesReading/Writing Byte Stream Files

Use standard read/write verbs

Programs read/write "chunks," not records

With MAXRECSIZE=1, each byte in a file is
randomly addressable

With ANYSIZEIO=TRUE, programs can
read/write up to 220-1 bytes at a time

Actual amount read/written is returned in:
CURRENTRECORDLENGTH file attribute
Bits [47:20] in Algol READ/WRITE result word
Bits [47:20] of COBOL-85 MCPRESULTVALUE

Once you have a stream file declared, using it is fairly easy. You use the standard open/close and read/write
statements in your programming language. You are generally not reading and writing records, however, but
"chunks" of data. The formatting of the data you read and write is entirely up to you. All that the MCP tries to
do is move the number of bytes you requested to or from the physical file.

Stream files support both sequential and random I/O. The nice thing about having MAXRECSIZE=1 and
FRAMESIZE=8 is that each byte in the file is randomly addressable.

With MAXRECSIZE=1 and FRAMESIZE=8, MCP applications reading a stream file will by default read one
record at a time – one byte. This is not only tedious, it is very inefficient. This is why the ANYSIZEIO
attribute exists. Setting ANYSIZEIO allows an application to read up to 220-1 records (bytes) at a time. The
MCP takes care of segmenting the logical reads and writes into appropriate physical reads and writes,
crossing disk sector and area boundaries as necessary. Thus, you can randomly position to an arbitrary point
in the file and read or write an arbitrary number of bytes.

The only time the MCP may return fewer bytes for a read operation than you asked for with
ANYSIZEIO=TRUE is when you attempt to read beyond end of file. The MCP will return just the amount of
data up to EOF. The EOF indication will not be returned to you until the next read. You can determine how
many bytes were actually read in a number of ways, including:

• The value of the CURRENTRECORDLENGTH file attribute.

• Bits [47:20] from an Algol READ result word (this word has the same format as the STATE file
attribute). This is much more efficient than accessing the CURRENTRECORDLENGTH attribute.

• Bits [47:20] from the COBOL-85 MCPRESULTVALUE special register (which also has the format of the
STATE attribute). This is also a very efficient method of determining actual I/O length.

This is a very brief review of byte-stream files and programming for them. There is more information in the
I/O Subsystem Guide and File Attributes Programming Reference Manual. I gave a UNITE talk on stream
files in 2001. There is a link to that presentation and some sample files in the References section at the end of
this presentation.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 10

MCP-4026ParadigmParadigmParadigm 10

Network SharesNetwork Shares

Specifically, "shared network resources"
File system directories/folders
Printers, CD-ROM devices, possibly others

MCP uses the Server Message Block (SMB)
protocol, also known as

Windows/LM (LAN Manager) networking
CIFS (Common Internet File System)
SAMBA (for Unix/Linux systems)

Uses NetBIOS over TCP/IP as a transport
TCP ports 137, 138, 139
MCP does not support port 445 (Windows 2000+)

The next issue to discuss is that of network shares. More specifically, these are known as "shared network
resources." The most common resource to share is a disk directory or folder, but many systems also allow the
sharing of printers and CD-ROM devices, and possibly other objects as well.

To access these shared resources, the MCP uses a protocol known as Server Message Block, or SMB. This
was originally developed by IBM as part of their LanManager product. It was picked up and enhanced by
Microsoft, and now forms the basis of Windows networking. It is also known as CIFS (Common Internet File
System). Most Unix and Linux systems have compatible implementations, the best known of which is
SAMBA.

SMB as implemented on the MCP uses the original NetBIOS over TCP/IP transport mechanism. This uses
TCP ports 137 (name service), 138 (datagram service), and 139 (session service). Note that the MCP does not
support the implementation of SMB that operates over TCP port 445, which Microsoft introduced with
Windows 2000.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 11

MCP-4026ParadigmParadigmParadigm 11

Naming Network ResourcesNaming Network Resources

Resources to be shared are defined by the
sharing (server) system

Each resource is assigned a "share" name

Resources are located using UNC names
Universal Naming Convention
\\<server name>\<share name>\<path>

<server name> can be
– NetBIOS (simple) host name
– IP address
– FQDN (fully-qualified domain name)

<path> names the file relative to the shared directory

In order to access a remote resource, you need to be able to talk about it. To that end, each resource has a
name that is assigned by the sharing (owner, server) system. In SMB, each resource is assigned a "share
name," which is unique within that server. There is standard, UNC (Universal Naming Convention), that
client systems use to identify a specific resource. The general scheme has two or three parts and is represented
as:

\\<server name>\<share name>\<path>

The <server name> is the NetBIOS host name, a FQDN (fully-qualified domain name), or an IP address. The
<share name> is the name assigned to the shared resource by the server. The <path> is optional, but almost
always used with shared directories. It names a specific file or sub-directory relative to the root of the shared
directory.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 12

MCP-4026ParadigmParadigmParadigm 12

Resource = Share + PathResource = Share + Path

Server "HST" Client

Network

HST shares folder
C:\Data\Pay as "PR"

Client requests access to
\\HST\PR\YTD\Sal.csv

Actual shared resource is C:\Data\Pay\YTD\Sal.csv

"root path" "relative path"

This diagram illustrates how the naming of shared disk directory resource works. A server system is
configured to share a folder "C:\Data\Pay" using the share name "PR". This is termed the "root folder" or
"root path" for the share. The client has no knowledge of where this root folder is located in the server's file
system, but constructs a UNC name from the server name ("HST"), the share name ("PR"), and a relative
path. In the example shown on the slide, the relative path consists of a sub-directory and file name within the
root directory of the share. The actual file that is accessed is determined on the server by concatenating the
root path for the share and the relative path specified in the client's UNC.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 13

Using the RedirectorUsing the Redirector

With that background, let us now turn to a discussion of the Redirector.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 14

MCP-4026ParadigmParadigmParadigm 14

The RedirectorThe Redirector

Provides access to network shares for
MCP applications

Companion to Client Access Services
CAS provides server-side (inbound) access to MCP
files from remote clients
Redirector provides client-side (outbound) access to
files on remote servers

Available since MCP 5.0 (SSR 46.1)

Described in I/O Subsystem Guide, §29

Implemented as a Logical I/O "virtual file"

The purpose of the Redirector is to allow MCP applications access to files on shared directories of remote
servers. It functions as a companion to Client Access Services (formerly known as NX/Services).

Client Access Services has been available since the advent of the ClearPath product line. It allows remote
client systems to access shared directories in the MCP file system. From the MCP's perspective, it is acting as
a server, and this is "inbound" access to MCP files.

The Redirector works in the other direction. It provides "outbound" access from MCP applications (acting a a
client) to shared directories on remote systems (which act as servers).

The Redirector has been available since MCP 5.0 (SSR 46.1), ca. 1999. It is documented in the I/O Subsystem
Guide, "Using the REDIRSUPPORT IOHANDLER Library", currently Section 29.

The Redirector is implemented as a "virtual file" for the MCP's Logical I/O subsystem. What is a virtual file?
That is the next topic.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 15

MCP-4026ParadigmParadigmParadigm 15

Virtual FilesVirtual Files

KIND=VIRTUAL

Semantics of I/O are not implemented by the MCP
Open/close, read/write, etc. are implemented by an
"I/O Handler" (IOH) library
API is described in I/O Subsystem Guide, §28

Attributes specifically for virtual files:
IOHLIBACCESS

IOHFUNCTIONNAME, IOHTITLE
IOHINTERFACENAME, IOHLIBPARAMETER
IOHPREFIX

IOHSTRING

Virtual files are distinguished by a KIND attribute having a value of VIRTUAL. They are considerably
different from other kinds of MCP files in that the semantics of I/O operations (what actually happens when
you use open/close/read/write statements) are not implemented in the MCP. Instead, these semantics are
implemented by a special type of library program called an I/O Handler, or IOH.

Unisys has initially implemented two of these virtual file I/O Handlers, the Redirector, and StreamIOH,
which we will discuss later in this presentation. You can implement your own I/O Handlers as well. The
virtual file API is documented in Section 28 of the I/O Subsystem Guide. The late Don Gregory wrote a
couple of articles on I/O Handlers in volume 16, number 7 (October/November 2002) of his ClearPath/A-
Series Technical Journal.

There are several file attributes that are used exclusively with virtual files. Most of these are used to identify
and connect with the appropriate I/O Handler library program.

• IOHLIBACCESS determines how the library will be linked. It has mnemonic values consistent with the
LIBACCESS library attribute: BYFUNCTION (the default), BYTITLE, and BYINITIATOR.

• IOHFUNCTIONNAME specifies the SL function name for a library if IOHLIBACCESS=BYFUNCTION.
This is equivalent to the FUNCTIONNAME library attribute.

• IOHTITLE specifies the library codefile title if IOHLIBACCESS=BYTITLE. This is equivalent to the
TITLE library attribute.

• IOHINTERFACENAME specifies the INTERFACENAME attribute for the library. This is not used with
the Redirector or StreamIOH handlers.

• IOHLIBPARAMETER specifies the LIBPARAMETER attribute for the library. This also is not used with
Redirector or StreamIOH.

• IOHPREFIX specifies the prefix string used with the entry points into the library. This is not commonly
used.

• IOHSTRING is a string-valued attribute that is passed to the library. It is typically used to pass
parameters or configuration information from the program declaring the virtual file to the I/O Handler.
The format and content of this string is determined by individual handlers. As we will see, this attribute
plays an important role in the use of both the Redirector and StreamIOH handlers.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 16

MCP-4026ParadigmParadigmParadigm 16

Redirector ImplementationRedirector Implementation

SL REDIRSUPPORT

Library implements SMB protocol for file and
printer shares

Accessed through the standard Logical I/O
API in MCP applications

File declarations and attributes
Open/close verbs
Read/write/seek verbs

As I mentioned, the Redirector is an implementation of a virtualfile I/O Handler. It has the default SL
function name " REDIRSUPPORT " and default codefile name *SYSTEM/NXSERVICES/REDIRECTOR .
You link to it using IOHLIBACCESS=BYFUNCTION (which need not be specified, since that is the default
value) and IOHFUNCTIONNAME="REDIRSUPPORT".

The Redirector IOH implements the SMB protocol necessary to access shared file directories on remote
systems. It also supports access to shared network printers, andcan be used by the Print System to direct
printer output from MCP applications to shared printers. I will discuss shared printers briefly later in the
presentation.

You access the Redirector using the standard MCP Logical I/O APIin your programs. You declare files in the
normal way, apply file equation, and use open/close, read/write,and seek verbs as you would for other MCP
files. Well, almost – a few of the attributes are different, and the semantics of I/Oare somewhat different
since you must access the remote files as byte-stream files.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 17

MCP-4026ParadigmParadigmParadigm 17

Declaring a Redirector FileDeclaring a Redirector File

KIND=VIRTUAL,
IOHLIBACCESS=BYFUNCTION,
IOHFUNCTIONNAME="REDIRSUPPORT"

Alternatively, set REDIRECTION=TRUE

Must be a byte-stream file
FILESTRUCTURE=STREAM, MAXRECSIZE=1, etc.
Defaults to EXTMODE=ASCII

IOHSTRING attribute
Passes parameters to the library
Most parameters can be specified by alternate means

When declaring a file for use with the Redirector, you must specify KIND=VIRTUAL,
IOHLIBACCESS=BYFUNCTION (the default), and IOHFUNCTIONNAME="REDIRSUPPORT".
Alternatively, you can set all three of these attributes implicitly by setting the file attribute REDIRECTION to
TRUE. REDIRECTION is simply a convenience attribute that makes it easy to access the Redirector. You can
specify these attributes in a program's file declaration, through file equation, or dynamically in the program at
run time, before the file is opened.

Once again, when accessing files on network shares directly, the MCP application must deal with them as
byte-stream files. Therefore, the logical file must have the FILESTRUCTURE, MAXRECSIZE, and other
attribute values required for byte-stream files discussed earlier in this presentation. Files using the Redirector
default to EXTMODE=ASCII, which is generally what you want to enable ASCII/EBCDIC translation
between the file on the network share and the MCP application. If you will be processing binary data, you can
suppress translation by setting INTMODE and EXTMODE to the same mnemonic value (OCTETSTRING is a
good choice) or by setting DEPENDENTINTMODE=TRUE.

You will almost always need to specify the IOHSTRING attribute for Redirector files. As mentioned earlier,
this string-value attribute passes file-specific parameter information to the IOH library. Although
IOHSTRING is the most common way to pass these parameters, it is possible to convey most parameter
information to the Redirector by a couple of alternate means. I will discuss the IOHSTRING parameters, and
those alternate means, next.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 18

MCP-4026ParadigmParadigmParadigm 18

IOHSTRING ParametersIOHSTRING Parameters

SERVERNAME = simple name

SHARENAME = simple name

DOMAINNAME = fully qualified name

IPADDRESS = n.n.n.n

CREDENTIALS = username/password

USERDOMAIN = simple name

TIMEOUT = n [seconds]

SMBTRACE = TRUE|FALSE

When used with Redirector files, IOHSTRING parameters are written as a series of name=value pairs,
delimited by one or more spaces. The parameters may be specified in any order. Some parameters have
abbreviations, as shown by underlining on the slide.

• SERVERNAME is the NetBIOS name of the remote server hosting the shared directory. Whether this
parameter is included in IOHSTRING or not, its value is required to make the connection to the remote
server.

• SHARENAME is the name of the shared resource on the remote server. As with SERVERNAME, its value
must be specified, whether in IOHSTRING or by some other means.

• DOMAINNAME is the FQDN (fully-qualified domain name) of the remote server (e.g., mysvr.corp.com).
This parameter is optional, but may be necessary if the network cannot resolve the SERVERNAME by
itself. This may happen if NetBIOS name resolution is not properly configured on the network, or it is
blocked by a router or firewall.

• IPADDRESS is the Internet Protocol address of the remote server, written in the traditional dotted-
decimal notation (e.g., 192.168.16.34). This is also optional, and is typically used only when neither
SERVERNAME nor DOMAINNAME resolution is successful.

• CREDENTIALS specifies the username and/or password needed to access the remote resource. As we
will see shortly, there is an alternate way to specify credentials that is usually preferable.

• USERDOMAIN specifies the user domain or workgroup under which the credentials will be
authenticated. On a Windows network, this corresponds to the name of the Windows or Active Directory
domain. This parameter is optional, but may be necessary if more than one user domain is visible on the
network.

• TIMEOUT specifies the number of seconds the Redirector will wait for responses from the remote server
before declaring an error. Values between 10 and 60 are usually adequate.

• SMBTRACE is a Boolean option that enables diagnostic tracing. The trace data is written to a data file.
See UCF 80558376 on http://support.unisys.com for more information about the use of this option.

http://support.unisys.com

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 19

MCP-4026ParadigmParadigmParadigm 19

Naming the Shared ResourceNaming the Shared Resource

Analog to UNC \\server\share\path

Relative path method
Specify SERVERNAME and SHARENAME in IOHSTRING

Specify the path in one of the file name attributes
– FILENAME, LFILENAME
– TITLE, LTITLE (do not use an on-part)
– PATHNAME

Absolute path method
LFILENAME=*UNC/server/share/path
Overrides server or share specified in IOHSTRING
*UNC prefix is understood only by the Redirector

In addition to providing parameters through IOHSTRING or one of the alternative methods, you must
identify the specific file or sub-directory within the network share that you wish to access. Redirector
provides two ways to do this, both analogous to the UNC "\\<server name>\<share name>\<path>" notation.

The first method uses a relative path name. You specify the SERVERNAME and SHARENAME parameters in
IOHSTRING. You then specify the <path> portion of the UNC name through one of the MCP file name
attributes, FILENAME, LFILENAME, TITLE, LTITLE, or the POSIX-oriented PATHNAME attribute. It is
generally a good idea to use the "L" attributes, as the FILENAME and TITLE attributes will truncate node
names longer than 17 characters. Also, do not use an on-part in TITLE or LTITLE. Doing so implicitly
changes the KIND of the file to DISK, at which point it is no longer a virtual file, and thus will not use the
Redirector. The MCP will simply look for the file name in its local file system.

The second method uses an absolute path name that is very similar to the standard UNC notation. You specify
one of the file name attributes with a first node of "*UNC". The second node must be the <server name> and
the third node must be the <share name>. The remaining nodes in the file name specify the relative <path>
name to the specific file or sub-directory you are trying to access. Any server or share name you specify using
this file name notation overrides any server or share name present in IOHSTRING. Note that MCP file name
attributes require you to use forward slashes (/), not the backslashes (\) typically used in UNC notation. As
with the relative path method, do not include an on-part when using the TITLE or LTITLE attributes.
Finally, note that the "*UNC" prefix is recognized only by the Redirector. Used with any other type of file, it
is taken literally as part of the file name.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 20

MCP-4026ParadigmParadigmParadigm 20

Example: Algol with Relative PathExample: Algol with Relative Path
FILE SALFILE (REDIRECTION,

FILESTRUCTURE=STREAM,
MAXRECSIZE=1,
FRAMESIZE=8,
ANYSIZEIO,
EXTMODE=ASCII,
INTMODE=EBCDIC,
FLEXIBLE,
FILEUSE=IO,
LTITLE="YTD/"""Sal.csv""".",
IOHSTRING="SERVER=HST SHARE=PR TIMEOUT=30"

" CREDENTIALS=USAH/PW"
" USERDOMAIN=MYCORP"
" IPADDRESS=192.168.54.211");

This slide shows an example of how you might declare a file in Algol for use with the Redirector. Note the
use of the REDIRECTION attribute to set the KIND, IOHLIBACCESS, and IOHFUNCTIONNAME attributes
to connect with the Redirector. The next several attributes configure the file to access a byte stream. The
LTITLE attribute designates a path name that will be relative to the server and share names specified in the
IOHSTRING attributes. In this case the IOHSTRING includes the CREDENTIALS and USERDOMAIN
parameters for the remote server. It also includes the IP address, which is not normally something you want to
specify unless NetBIOS and FQDN name resolution fails to work.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 21

MCP-4026ParadigmParadigmParadigm 21

Example: COBOL with Absolute PathExample: COBOL with Absolute Path
FD SAL-FILE

RECORD CONTAINS 1 TO 8192 CHARACTERS
DEPENDING ON W-BSF-SIZE

VALUE OF
REDIRECTION IS TRUE
FILESTRUCTURE IS STREAM
MAXRECSIZE IS 1
BLOCKSTRUCTURE IS FIXED
FRAMESIZE IS 8
EXTMODE IS ASCII
ANYSIZEIO IS TRUE
LTITLE IS "*UNC/HST/PR/YTD/""Sal.csv"""
IOHSTRING="CREDENTIALS=USAH/PW

"USERDOMAIN=MYCORP TIMEOUT=30
"IPADDRESS=192.168.54.211".

-
-

This slide shows a similar file declaration as it would appear for COBOL-74 or COBOL-85. The main
difference is that the file on the remote server is identified using the absolute path method with the *UNC file
name prefix. Note that the server and share names are part of the LTITLE attribute in this example instead of
being specified as parameters in the IOHSTRING attribute.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 22

MCP-4026ParadigmParadigmParadigm 22

Other File Attributes SupportedOther File Attributes Supported
DEPENDENTSPECS

DEPENDENTINTMODE

OVERRIDEEXTMODE

ACCESSDATE/TIME

ALTERDATE/TIME

CREATIONDATE/TIME

FILEKIND=PERMDIR

FILELENGTH

LASTRECORD

SYNCHRONIZE

SECURITYMODE

SECURITYTYPE

SECURITYUSE

USERINFO (DOS
attribute bitmask)

The Redirector supports a number of other file attributes, primarily for interrogating properties of the shared
file and to set its security.

• The date/time attributes will return the related timestamps from the remote system, if they are supported
by that system.

• The concept of FILEKIND is not supported by SMB. You can set and interrogate FILEKIND on a
Redirector file, but with one exception the value is simply stored in the logical file and not propagated to
the remote system. The exception is the value PERMDIR, which is used to open and create sub-
directories within the shared directory. I will discuss this further shortly.

• FILELENGTH and LASTRECORD will return the size of the file in bytes once the file is opened.

• SYNCHRONIZE can be used to flush buffers when writing to the remote system.

• The security attributes can be used to interrogate access permissions for a file, and when creating a file,
to set the permissions on the remote system.

• USERINFO is a general-purpose 48-bit word-valued (REAL in Algol and COBOL) attribute. With the
Redirector, this attribute is used to set and interrogate a bit mask of properties, similar to the "attributes"
property in Windows. The bits are:

– [0:1] Read-only flag
– [1:1] Hidden file flag
– [2:1] System file flag
– [3:1] Volume ID flag (read only, cannot be set)
– [4:1] Directory flag (read only, cannot be set)
– [5:1] File changed flag (also known as the "archive bit")

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 23

MCP-4026ParadigmParadigmParadigm 23

NXCONFIG FilesNXCONFIG Files

IOHSTRING parameters can be stored in a
separate MCP file

Uses a variation of the *UNC convention
LFILNAME=*NXCONFIG/configname/path

Parameters are found in a file named
NXSERVICES/CONFIG/configname

Must have FILEKIND=SEQDATA
– Max 250 chars read (including spaces)
– "%" trims spaces from config file records

Server name and share name are taken from the
configuration file parameters
Cannot include TIMEOUT in NXCONFIG

I have mentioned that the IOHSTRING parameters can be specified by alternate means. One of those means
involves the use of NXCONFIG files. These are simply small text files that store the parameters in the same
format as they would be in an IOHSTRING value.

You specify the use of an NXCONFIG file using a variation on the *UNC prefix convention. If the first node
of the file name is "*NXCONFIG", the Redirector takes the second node of the file name and prepends that
with "NXSERVICES/CONFIG/" to form the name of the file from which it will read the parameter data. The
third and following nodes then comprise the relative path portion of the UNC name.

NXCONFIG files are searched for using normal usercode and family substitution conventions. They must
have a FILEKIND of SEQDATA. The Redirector will read a maximum of 250 characters from the file,
including any trailing spaces in the text portion of the record (250 divided by 72 characters per line is almost
3.5 lines). You can spread the parameter data over more lines by using a "%" at the end of lines to terminate
the accumulation of characters on that line.

The SERVERNAME and SHARENAME parameters should be included in the NXCONFIG file, as this method
supports only the relative path name convention.

A simple NXCONFIG file might look like this
SERVER=DIGMHPO6 SHARE=TESTSHARE %
SMBTRACE=FALSE %
IPADDRESS=192.168.16.2 %

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 24

MCP-4026ParadigmParadigmParadigm 24

User Authentication for the ShareUser Authentication for the Share

IOHSTRING CREDENTIALS parameter
Supplies a username and password to the server
Possibly qualified by the USERDOMAIN parameter

Note: this exposes the password in clear text

Credentials files
Allows credentials for remote servers to be stored in
an encrypted MCP file
Searched for automatically if CREDENTIALS not
specified in IOHSTRING

Can be protected by standard MCP file security
(GUARDFILE, etc.)

Most remote systems will require that you present credentials in the form of a username and password in
order to authenticate and control access to the shared resource. One way to do that is by including a
CREDENTIALS parameter in the IOHSTRING attribute. The USERDOMAIN parameter is used with
CREDENTIALS to specify the user domain in which the credentials will be authenticated.

The problem with using the CREDENTIALS parameter is that is exposes the password in the clear. This is a
potentially serious security issue.

The Redirector supports another method of specifying credentials for a remote system. The remote username
and password (and optionally, the name of the user domain) can be encrypted and stored in a small MCP file,
called a "credentials file." If the CREDENTIALS parameter is not specified in IOHSTRING (or a
NXCONFIG file), then Redirector looks for a credentials file based on the SERVERNAME parameter. If this
file is found, the credentials from that file are transmitted to the remote system for authentication.

Credentials files are stored under the usercode that is opening the Redirector file. It is also possible to have a
"global" credentials file stored under the "*" node of the directory. Such a credentials file can be accessed by
multiple usercodes. Credentials files can be protected by standard MCP file security, particularly by the use of
guard files.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 25

MCP-4026ParadigmParadigmParadigm 25

Creating Credentials FilesCreating Credentials Files

Created by special MCP utility
*SYSTEM/NXSERVICES/MAKECREDENTIALS

Single space-delimited string parameter containing
– Remote server host name or "*"
– User name
– Password (may be in quotes to preserve case)
– Authentication domain name (optional)

Generates a small file under the originating
MCP usercode

NXSERVICES/CREDENTIALS/<server name>
NXSERVICES/CREDENTIALS (if server name="*")

Credentials files can be created by means of a utility program that is part of the standard software release,
*SYSTEM/NXSERVICES/MAKECREDENTIALS. This program takes a single string parameter. The
parameter string must contain three or four space-delimited tokens:

• The first token is the name of the remote server with which the credentials file will be used. If this token
is an asterisk (*), then the utility generates a so-called "default" credentials file than can be used with
any server within a user domain.

• The second token is the username to be authenticated on the remote system. This is generally case-
insensitive.

• The third token is the password for that username. The case sensitivity of the password varies,
depending on the version of the MCP and the type and version of the remote system. In general, the
more recent the version of either MCP or Windows software involved, the more likely it is that the
password will be case sensitive. This token may be embedded in double quotes (") if it contains lower-
case and/or non-alphanumeric characters.

• The fourth token is the name of the user domain. This is optional.

The utility encrypts the parameters and stores them in a file, named

NXSERVICES/CREDENTIALS/<server name>

under the initiating user's usercode. If the parameter had an asterisk as the first token, the credentials file will
be named simply NXSERVICES/CREDENTIALS. When opening a file, the Redirector will search first for a
credentials file for the specific server being accessed. If no such credentials file exists, it will then search for a
default credentials file.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 26

MCP-4026ParadigmParadigmParadigm 26

Credentials File ExamplesCredentials File Examples

WFL/CANDE RUN command
RUN *SYSTEM/NXSERVICES/MAKECREDENTIALS
("WINSERV PAUL ""my!%#@&PW"" MYCORP")

CANDE UTILITY command
U *SYSTEM/NXSERVICES/MAKECREDENTIALS
WINSERV paul "myPW" MYCORP

Creating a "default" credentials file
RUN *SYSTEM/NXSERVICES/MAKECREDENTIALS
("* PrintServ ""ps-pw"" MYCORP")

This slide shows three examples of credentials file generation using MAKECREDENTIALS. Note the use of
doubled double-quotes within the quoted parameter strings. The CANDE UTILITY (U) command is an
especially nice way to generate credentials, as it eliminates the need to quote the parameter string and supply
extra quotes for quoted passwords.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 27

MCP-4026ParadigmParadigmParadigm 27

Credentials File ConventionsCredentials File Conventions

Can be used only from the usercode that
created it

A non-usercoded run of MAKECREDENTIALS
Creates a "global" credentials file
Usable from any usercode

Search order (family substitution applies)
1. CREDENTIALS in IOHSTRING
2. (usercode)NXSERVICES/CREDENTIALS/server
3. (usercode)NXSERVICES/CREDENTIALS
4. *NXSERVICES/CREDENTIALS/server
5. *NXSERVICES/CREDENTIALS

There are some important conventions and restrictions that apply to the use of credentials files.

The most significant restriction is that a credentials file may only be used from the usercode that created it.
The MAKECREDENTIALS utility stores the creating MCP usercode in the file along with the authentication
data you specified. When the Redirector attempts to use a credentials file, it checks that the usercode directory
under which the file was found matches the usercode stored in the file. If these do not match, the connection
to the remote server is terminated with an open error. Thus, you cannot copy someone else's credentials file to
your usercode and use it.

It is possible, however, to create a so-called "global" credentials file that can be used from any MCP
usercode. To do this, you must run MAKECREDENTIALS without a usercode (e.g., from the ODT). The file
will be stored under the *NXSERVICES directory.

As the slide shows, credentials are searched for in priority order. If the CREDENTIALS parameter is present
in IOHSTRING or an NXCONFIG file, those are used regardless of the presence of any credentials files. If a
CREDENTIALS parameter is not present, the Redirector searches for a credentials file first under the opening
task's usercode and for the specific server being accessed, cascading down through the combinations of
default and global credentials files. Normal family substitution applies when searching for credentials files.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 28

MCP-4026ParadigmParadigmParadigm 28

Redirector Directory OperationsRedirector Directory Operations

Directories within network shares are a lot
like MCP permanent directories

Are physically present, not just a node in a name
Must be explicitly and individually created and deleted
Cannot have a file and a directory of the same name

Directory operations
Specifying FILEKIND=PERMDIR is required
Create: Open with NEWFILE=TRUE

Delete: Open, then close with purge
Rename: Open, then change LFILENAME

Read: Returns a stream containing file entries
Format defined in I/O Subsystem Guide

Directories or folders on most other systems are not like the "virtual directories" we use in the MCP
environment. Directories on other systems are physically present, and are often physically represented as a
file, not just a node in a multi-level file name. These must be explicitly and individually created and deleted,
perhaps using commands similar to MKDIR and RMDIR. Because the directories are stored in much the same
way a file is, most systems do not support the MCP's ability to have a directory and a file with the same name.

The Redirector supports a basic set of operations against directories on network shares. To access a directory,
you open the directory through Redirector as if it were a file, but you must explicitly set
FILEKIND=PERMDIR. This attribute must be set in the file's source code declaration or dynamically at run
time – it cannot be established through file equation. You can perform the following operations on these
directory "files":

• Create – setting NEWFILE=TRUE when opening a Redirector file with FILEKIND=PERMDIR will
create a new, empty directory on the remote share. If a file or directory of that name already exists, an
open error occurs. Any higher-level sub-directories must already exist, or an open error occurs as well.

• Delete – opening the directory with NEWFILE=FALSE and then closing the file with the PURGE option
will delete the directory on the remote share.

• Rename – opening the directory as input and then changing the FILENAME or LFILENAME attribute
will change the name of the directory on the remote share.

• Read – Opening the directory as input and reading as if it were a file returns a stream of the subordinate
file and sub-directory entries. These entries are prefixed with a binary length field and contain a mixture
of binary and EBCDIC data. The format of these directory entries is documented in Section 29 of the I/O
Subsystem Guide.

Writing to a directory file is not allowed. Directories are modified only by creating, deleting, and renaming
the subordinate files and sub-directories they contain. Changing the FILEKIND to or from PERMDIR on an
open Redirector file is also not allowed.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 29

MCP-4026ParadigmParadigmParadigm 29

Redirector TipsRedirector Tips

User authentication is often a problem area
Beware of password case sensitivity
Case sensitivity varies by Windows and MCP version
When in doubt, use matching case

NetBIOS name resolution is also a problem
Try using DOMAINNAME=<FQDN>
If necessary, use IOHSTRING IPADDRESS

Subdirectories on the share must exist – not
created automatically

Beware of ASCII/EBCDIC translation

Here are some tips on the use of the Redirector that I've gleaned from my experience with it.

First, if you are going to have a problem accessing a shared resource, the problem is probably going to
involve either user authentication or name resolution. Most authentication problems I have seen result from
mismatched expectations on the case sensitivity of passwords. When in doubt, try to match case exactly.

NetBIOS server name resolution is also a common problem, especially on networks with incompletely or
improperly configured domain controllers or DNS servers. Sometimes supplying a fully-qualified domain
name with the DOMAINNAME parameter will get around this. As a last resort use the IPADDRESS parameter,
but beware that this may cause a maintenance problem down the road, and may not work at all for servers that
have dynamically-assigned addresses.

As MCP users, we are very used to the idea that sub-directories in file names come and go automatically as
needed. That is not the case with sub-directories on most other types of systems. For Windows and
Unix/Linux systems especially, sub-directories must be explicitly created and deleted. Attempting to create a
file without having all of the sub-directories in its path present results in an open error. The Redirector will
not create these for you automatically. You must first create the necessary sub-directories on the remote
system or use the directory manipulation facilities of the Redirector. Obviously, the user account you are
authenticating with the remote share must have appropriate rights to any directories and files you will be
accessing.

Finally, beware that the Redirector by default uses EXTMODE=ASCII and most MCP application by default
have INTMODE=EBCDIC. This will result in ASCII/EBCDIC translation for I/Os done through the
Redirector. For text files, this is usually what you want; for binary data, this is usually disastrous. You can
disable translation by setting INTMODE and EXTMODE to the same value, or by setting the
DEPENDENTINTMODE attribute to TRUE.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 30

MCP-4026ParadigmParadigmParadigm 30

Defining Printer SharesDefining Printer Shares

See "Setting up a Connection to a Network
Printer Share" in the Installing a Printer for
MCP Print System Use manual

Example:
PS CONFIG +VIRTUAL SHAREPRN
BLOCKSIZE=10000,
TRANSLATION=NONE,
PROTOCOL=TRANSPARENT,
PPT=NONE, SPOOLER=NONE,
IOH="NXPRINT (SERVER=PSVR1 SHARE=LAZR2

NXCREDENTIALS=PUSR TIMEOUT=30)
IN SL REDIRSUPPORT"

DRIVER=…, etc.

I mentioned earlier that the *SYSTEM/NXSERVICES/REDIRECTOR library can also serve as an I/O
Handler for the Print System. This allows you to configure printers in the Print System that route their output
to a shared network printer. The current library replaces the older I/O Handler for network printing,
*SYSTEM/NXSERVICES/PRINT/REDIRECTOR, that was available prior to MCP 5.0.

A detailed description for configuring shared network printers can be found in the section "Setting up a
Connection to a Network Printer Share" in the Installing a Printer for MCP System Use manual. The slide
shows a basic example of such a printer configuration. The parameters in parentheses for the NXPRINT IOH
are similar to those for the IOHSTRING file attribute. NXPRINT supports credentials files and a template
mechanism that eases the task of configuring large numbers of network printers. Global and default
credentials files are especially useful, as a single credentials file can permit access to a large number of
printers by a large number of Print System users.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 31

MCP-4026ParadigmParadigmParadigm 31

PCDRIVER UtilityPCDRIVER Utility

*SYSTEM/NXSERVICES/PCDRIVER

Takes a single string parameter
Documented in System Software Utilities Operations
Guide

Capabilties
Interfaces to the Windows-based "Launcher" utility
Transfers files between MCP and an SMB share
– Binary file transfer
– Text file transfer with MCP record format mapping

Removes files from an SMB share
Does not overwrite existing files (MCP or share)
Stops on first error; reports in TASKVALUE.[5:6]

36

In the beginning of this presentation I made the point that the Redirector is a file access mechanism rather
than a file transfer mechanism. That does not mean that it cannot be used for file transfer, however. It is quite
easy with the Redirector to write a program that copies a stream file between a network share and the MCP
file system.

Unisys supplies a utility program as part of the standard software release,
*SYSTEM/NXSERVICES/PCDRIVER, that handles a variety of common file transfer tasks for SMB shared
directories. This program is documented in the System Software Utilities Operations Guide.

PCDRIVER has two main modes of operation. One is to communicate with a Windows-based program,
Launcher (also part of the standard release and available from the Installs share) over a standard
TCP/IP port. This mode does not involve the SMB protocol, and I will not discuss it further in this
presentation.

The second mode of operation uses the Redirector and the SMB protocol to access files on remote shares. In
this mode, PCDRIVER supports three primary operations:

• Transfer binary byte-stream file between a remote share and the MCP.

• Transfer a text file between a remote share and the MCP, converting between line-oriented text format
on the remote share and record-oriented format on the MCP.

• Remove a file from an SMB share. Only individual files can be removed by PCDRIVER, not whole
directories.

PCDRIVER will not allow you to overwrite an existing file on either the MCP or the shared directory. You
must explicitly remove existing files before transferring a file of the same name to either type of destination.

PCDRIVER allows you to submit multiple commands in one run. It will stop processing commands on the
first error it encounters. It returns an error code in the low-order six bits of its TASKVALUE task attribute.
These error codes are documented in the Operations Guide.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 32

MCP-4026ParadigmParadigmParadigm 32

PCDRIVER ParameterPCDRIVER Parameter

In-line syntax
Remote server specification
– IP address or FQDN (for Launcher interface)
– \\servername\sharename (for SMB interface)
[server options] (optional)
List of commands separated by ";"

Command-file syntax
RUN …/PCDRIVER ("FILE MY/PCD/PARAMS");

Reads parameter data from the named file
Must be an MCP FILEKIND of type text

File contents are same format as in-line syntax

PCDRIVER is controlled by a single string parameter. The string can contain either the commands directly, or
it can contain reference to an MCP text file where the commands are stored. If the string parameter begins
with the word "FILE", then the commands are taken from the file having the title that follows. Otherwise,
PCDRIVER expects to find its commands in the string parameter.

The command syntax begins with a designation of the destination and the mode in which PCDRIVER will
run:

• If the command syntax starts with an IP address or a fully-qualified domain name (e.g.,
server.company.com), then PCDRIVER opens a connection to the Launcher program on the specified
system.

• If the command syntax starts with a server name and share name in UNC format (including backslashes,
e.g., \\myserver\myshare), PCDRIVER uses Redirector to communicate with that network share.

Following this initial designation of the mode and destination, the syntax may optionally include a set of
options in square brackets that apply to the entire run. Some of these options configure the Redirector; the rest
supply defaults for converting between line-oriented and record-oriented file formats.

The remainder of the command syntax consists of PCDRIVER commands. If there are multiple commands,
they must be delimited by semicolons (;).

If you direct PCDRIVER to read its commands from an external file, the file must have one of the text-
oriented FILEKINDs – TEXTDATA, SEQDATA, JOBSYMBOL, etc.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 33

MCP-4026ParadigmParadigmParadigm 33

PCDRIVER SMB Server OptionsPCDRIVER SMB Server Options

CREDENTIALS

Username/password
#nodename (to specify alternate CREDENTIALS file)

Attempts to use a CREDENTIALS file if not specified

USERDOMAIN = simple name

NODISPLAY

<text data option>
Multiple text options can be specified
These are defaults
Can be overridden by text options on individual file-
transfer commands

Server options are optional in a PCDRIVER command string, but if present, must be coded within square
brackets following the "\\servername\sharename" syntax. Multiple options must be separated by commas. The
options shown here are just the ones for the Redirector mode of operation. There are additional options used
with the Launcher mode.

• CREDENTIALS – this option specifies user credentials similar to the parameter with the same name in a
Redirector IOHSTRING attribute. Instead of a username/password pair, you can also specify a single
filename node, prefixed by a number sign (#). Using this form will attempt to locate a credentials file
with the specified name as the last node in its file name. If CREDENTIALS is not specified, the
Redirector will look for a credentials file in the manner described earlier for Redirector files.

• USERDOMAIN – this option is identical to the one of the same name in a Redirector IOHSTRING
attribute.

• NODISPLAY – specifying this option causes PCDRIVER to suppress the display of error messages that
indicate a command failure. Regardless of the presence of this option, PCDRIVER stops executing
commands upon the first failure, and stores an error code in the low-order six bits of its TASKVALUE
attribute.

• <text data option> – this is one or more of the options for mapping between line-oriented text files on the
remote share and a record-oriented MCP file. Options specified here serve as defaults for any text-
oriented file transfer commands that follow. These options may be overridden by <text data option>
specifications on individual commands. These options will be discussed shortly.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 34

MCP-4026ParadigmParadigmParadigm 34

PCDRIVER SMB CommandsPCDRIVER SMB Commands

BINARYDATATOPC

<MCP title> <PC path>

BINARYDATAFROMPC

<MCP title> <PC path>

TEXTDATATOPC
[<text data options>] <MCP title> <PC path>

TEXTDATAFROMPC
[<text data options>] <MCP title> <PC path>

REMOVE <PC path>

There are five commands that can be used with the Redirector mode of PCDRIVER.

• BINARYDATATOPC – Transfer a data file from the MCP file system to the remote network share. No
translation or record formatting takes place. The MCP file does not need to be a stream file, but does
need to have BLOCKSTRUCTURE=FIXED and FRAMESIZE 4. Records are written to the remote
share head-to-tail, with no line delimiters. The command will fail if a file with the same name as <PC
path> is present on the remote share.

• BINARYDATAFROMPC – Transfer a data file from the remote network share to the MCP file system. No
translation or record formatting takes place. The file created on the MCP will be a stream file with
EXTMODE=ASCII. The command will fail if a file with the same name as <MCP title> is present in the
MCP file system.

• TEXTDATATOPC – Transfer a file from the MCP file system to the remote network share. If the MCP
file is encoded in EBCDIC, the data will be translated to ASCII according to the CCSVERSION text
data option, if any. The MCP file does not need to be a stream file, but does need to have
BLOCKSTRUCTURE=FIXED and FRAMESIZE 4. Records are written to the remote share with trailing
blanks trimmed and a carriage-return/line-feed pair inserted after each trimmed record. The command
will fail if a file with the same name as <PC path> is present on the remote share

• TEXTDATAFROMPC – Transfer a file from the remote network share to the MCP file system. Unless the
TRANSLATE option is FALSE, the data will be translated from ASCII to EBCDIC according to the
CCSVERSION option, if there is one. The file created on the MCP will be a record-oriented file with
EXTMODE=EBCDIC. The command will fail if a file with the same name as <MCP title> is present in
the MCP file system.

• REMOVE – Removes the named file from the remote network share. If no such file is present on the
share, the command is ignored and no error is generated. If the file is a directory, the command fails.

Note that TEXTDATATOPC and TEXTDATAFROMPC can both accept <text data options> if encoded in
square brackets after the command name. These options are discussed next.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 35

MCP-4026ParadigmParadigmParadigm 35

PCDRIVER Text Data OptionsPCDRIVER Text Data Options

toTRIMBLANKS = TRUE|FALSE

fromTRANSLATE = TRUE|FALSE

fromOVERFLOW = TRUNCATE|FOLD|WRAP|ERROR

fromRECORDS CRLF|IMPLICIT

fromAREABYTES = n (default 81,000)

fromUNITS CHARACTERS|WORDS

fromBLOCKING = n (default depends on rec size)

fromFILEKIND <filekind> | DATA n

fromSEQUENCENUMBERSONPC = TRUE|FALSE

bothCCSVERSION <version> (defaults to SYSOPS)

to/fromOption syntax (defaults underlined)

The <text data options> portion of the PCDRIVER command syntax controls how data is mapped between
line-oriented stream files on the remote network share and record-oriented files in the MCP file system. These
options can be specified only for the TEXTDATATOPC and TEXTDATAFROMPC commands. They can also
be specified as global options at the beginning of the command string, but with one exception discussed
below, apply only to the TEXTDATATOPC and TEXTDATAFROMPC commands. These options are always
written as a comma-separated list within square brackets.

• CCSVERSION specifies which variant of ASCII/EBCDIC translation will take place. This defaults to
the system-level setting determined by the ODT SYSOPS CCSVERSION command..

• SEQUENCENUMBERSONPC indicates whether the line-oriented file on the remote network share has (or
should have) sequence numbers in the position determined by the file's FILEKIND attribute. The default
is FALSE.

• FILEKIND applies only to the TEXTDATAFROMPC command. It specifies the FILEKIND mnemonic
that will be assigned to the MCP file that is created by the transfer operation. In addition to the standard
FILEKIND mnemonics, you can specify "DATA n" to indicate a data file with n-character records. The
default size for data file records is 90 characters.

• BLOCKING specifies the blocking factor for MCP files, and is valid only for the TEXTDATAFROMPC
command.

• UNITS specifies the value of the UNITS file attribute for the MCP file, and is valid only for the
TEXTDATAFROMPC command.

• AREABYTES specifies the size of disk areas for the MCP file and is valid only for the
TEXTDATAFROMPC command. Also applies to the BINARYDATAFROMPC command when specified
as a global default text option.

• RECORDS specifies whether record boundaries in the line-oriented file on the network share should be
determined from the presence of line delimiters (CRLF mnemonic, the default) or fixed character
intervals (IMPLICIT mnemonic) determined by the FILEKIND and SEQUENCENUMBERSONPC
options. This option is valid only for the TEXTDATAFROMPC command.

• OVERFLOW specifies how line-oriented records that exceed the size of the MCP record area are to be
handled. Valid mnemonic values are TRUNCATE (the default), FOLD (using "\" as a fold character),
WRAP (as in word wrap), or ERROR. This option is valid only for the TEXTDATAFROMPC command,
and ignored when RECORDS=IMPLICIT.

• TRANSLATE specifies whether ASCII/EBCDIC translation will occur. This option is valid only for the
TEXTDATAFROMPC command. The default value is TRUE.

• TRIMBLANKS specifies whether trailing blanks are trimmed from lines written to the remote share. This
option is valid only for the TEXTDATATOPC command.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 36

MCP-4026ParadigmParadigmParadigm 36

PCDRIVER ExamplePCDRIVER Example
RUN *SYSTEM/NXSERVICES/PCDRIVER(

"\\HST\PAY [AREABYTES=900000] " &

"BINARYDATATOPC MY/BLOB blobs\my.dat;" &

"TEXTDATAFROMPC [" &
"FILEKIND DATA 360," &
"UNITS=WORDS," &
"BLOCKING=30," &
"OVERFLOW=ERROR] " &

"DATA/FROM/PC ON DROP toMCP.txt;" &

"REMOVE toMCP.txt");

This slide shows a sample run of the PCDRIVER program. The command string breaks down as follows:

• \\HST\PAY specifies that the program will use its Redirector mode to connect to the remote system.
The server name is HST and the share name is PAY.

• [AREABYTES=900000] specifies that MCP files created by this run will have an AREALENGTH of
900,000 bytes.

• The BINARYDATATOPC command will transfer the MCP file "MY/BLOB" to the network share sub-
directory "blobs" and file name "my.dat" without translation or conversion to line-oriented format.

• The TEXTDATATOPC command will transfer the "toMCP.txt" file from the the network share to the
MCP file titled "DATA/FROM/PC ON DROP". The data will be translated from ASCII to EBCDIC
(TRANSLATE=TRUE by default). The MCP file that is created will have FILEKIND=DATA,
UNITS=WORDS, MAXRECSIZE=60 (360 bytes 6 bytes/word), and BLOCKSIZE=1800 (60 30).
With OVERFLOW=ONERROR, if any lines from the file on the network share are longer than 360
characters, an error will be generated for the command.

• The REMOVE command will remove the file just transferred from the network share. Note that this
command will not be executed if either of the preceding commands fails.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 37

Using StreamIOHUsing StreamIOH

That concludes our discussion, for the time being, of the Redirector. One of the issues with the Redirector is
that MCP applications using it must access files on network shares as byte-stream files. If the file has binary
data, or the program is planning to parse the data in some way, this may be appropriate.

What happens though, if the file on the share is line-oriented text and you simply want to read the lines as if
they were traditional records? That would generally involve reading chunks of data from the stream file,
parsing the data for line delimiters, assembling whole lines (which could be split across chunks) into records,
and then doing the necessary record-oriented processing. Such a task is not rocket science, but it's not trivial,
either, especially in a language like COBOL.

This is where StreamIOH comes in.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 38

MCP-4026ParadigmParadigmParadigm 38

What is StreamIOH?What is StreamIOH?

Maps I/Os between traditional MCP record
formats and line-oriented text file formats

Allows an MCP application to read and write byte
stream files as if they were record files
Mapping to/from record format is done on the fly

Another virtual file implementation
SL STREAMIOH, available since MCP 7.0

Use with MCP byte stream files
Use with files on remote servers via Redirector
Invoked solely with file attributes!
– No program changes necessary
– Can be implemented using only file equation

StreamIOH is a facility that can map logical I/Os between the record-oriented formats we traditionally use
with MCP applications and line-oriented text file formats typically used on other systems. It allows MCP
applications to read and write line-oriented text files as if they were record files. This conversion is generally
done on the fly, as records are being read and written. With one exception that we will discuss later, the file is
not converted en masse between line-oriented and record format in a separate pass.

Like the Redirector, StreamIOH is virtual file implementation. By default, it is accessed through the SL
function name STREAMIOH. It has been available since MCP 7.0 (SSR 48.1), ca. 2002, but its
implementation was incomplete until MCP 9.0. It is bundled in the standard system software release.

You can use StreamIOH in two ways:

• To read and write line-oriented byte stream files within the MCP file system.

• In conjunction with the Redirector, to read and write line-oriented byte stream files on a network share.

One of the really nice things about StreamIOH is that can be invoked solely with file attributes. This means
that you can give an existing program the ability to read and write variable-length, line-oriented text files
without changing the program or even recompiling it. StreamIOH can be implemented simply using file
equation.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 39

MCP-4026ParadigmParadigmParadigm 39

Using StreamIOH with MCP FilesUsing StreamIOH with MCP Files

MCP
App FIB

MCP Logical I/O

StreamIOH

Byte-Stream
File

FIB

MCP
Physical I/O

"Virtual" (Record) File

"Physical" File

"Logical" (Stream) File

This diagram shows how StreamIOH works when accessing byte stream files within the MCP file system.
Since it is implemented as a virtual file, MCP applications access it through a standard file declaration and
I/O verbs in the programming language. The data structure that represents a file at run time is called a File
Information Block, or FIB. The MCP's Logical I/O module connects to the StreamIOH library to process the
MCP application's I/O requests. The result of these requests will be viewed by the application as full records.

The StreamIOH library dynamically creates another FIB to access the physical byte stream file. The library
reads or writes chunks of stream data for the physical file as necessary, and translates between the line-
oriented text format of the physical file and the record-oriented format that the MCP application sees.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 40

MCP-4026ParadigmParadigmParadigm 40

StreamIOH Example and DemoStreamIOH Example and Demo
RUN MY/PROG; FILE FIXED (

KIND=VIRTUAL, IOHFUNCTIONNAME="STREAMIOH",
LFILENAME=MY/STREAM.TXT, FAMILYNAME=PACK);

To see how easy it is to use StreamIOH, this slide shows a very basic example. Assume that the program
MY/PROG has been written to read from the file with INTNAME "FIXED"in the traditional record-oriented
manner. Assume also that we have a line-oriented text file with carriage-return/line-feed delimiters stored on
the PACK family as MY/"STREAM.TXT".

To allow the program to read this stream file in a record-oriented fashion, all we need to do is file equate
KIND=VIRTUAL and IOHFUNCTIONNAME="STREAMIOH". There are a number of additional options that
can be specified, but the standard defaults allow us to read a simple line-oriented text file without specifying
anything else.

[Demo here]

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 41

MCP-4026ParadigmParadigmParadigm 41

Declaring a StreamIOH FileDeclaring a StreamIOH File

KIND=VIRTUAL,
IOHFUNCTIONNAME="STREAMIOH"

IOHLIBACCESS=BYFUNCTION is the default
There is no shorthand attribute, like REDIRECTION

Otherwise, declare like an ordinary record-oriented file

IOHSTRING attribute
Passes parameters to the StreamIOH library
Has parameters describing the physical file
Has parameters defining the stream/record mapping

To use StreamIOH with a file, you need to declare or file-equate KIND=VIRTUAL and
IOHFUNCTIONNAME="STREAMIOH". IOHLIBACCESS=BYFUNCTION is the default, so this does not
need to be specified. Alas, there is no convenient shorthand attribute like REDIRECTION as there is for the
Redirector.

In all other respects, though, you declare and use the file declaration in your program as you would for an
ordinary record-oriented file.

As with the Redirector, the IOHSTRING attribute is used to pass parameters to the StreamIOH library. There
are two types of parameters used with StreamIOH:

• Parameters describing the physical file

• Parameters defining how the mapping between line-oriented and record-oriented formats is to be done.

Both types of parameters may be intermixed and specified in any order. They are written as a sequence of
name=value pairs, separated by commas. Additional spaces may appear around the commas.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 42

MCP-4026ParadigmParadigmParadigm 42

Note this an IOHSTRING parameter
inside an IOHSTRING attribute

IOHSTRING Physical File ParametersIOHSTRING Physical File Parameters

General physical file parameters
KIND = DISK | CDROM | VIRTUAL
EXTMODE = <mnemonic>

Used only with KIND=VIRTUAL
IOHTITLE = <file title>
IOHFUNCTIONNAME = "<SL name>"
IOHSTRING = "<string>"
REDIRECTION

Since the file your program uses is a virtual file, the attributes for that file apply to and are seen by
StreamIOH. They do not directly apply to the physical file you are trying to access. StreamIOH passes
through many attributes (such as the file name and date/time stamps) between the virtual record-oriented file
your program sees and the physical file itself, but in some cases we need to talk about the virtual and physical
files individually.

There are several physical file parameters in the IOHSTRING attribute that describe characteristics of the
physical file to StreamIOH. Note that what we are talking about here are parameters within the IOHSTRING
attribute, even though they have the same name as file attributes.

• KIND specifies the type of physical file. The choices are DISK, CDROM, and VIRTUAL. The default
value is DISK.

• EXTMODE can be used to override the EXTMODE attribute of the physical file. Internally, StreamIOH
always processes data as EBCDIC. Your program cannot override this by setting the virtual file's
EXTMODE attribute.

The previous two parameters can be used with all StreamIOH files. The remaining parameters can be used
only when the KIND parameter has the value VIRTUAL, which will be discussed on the next slide.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 43

MCP-4026ParadigmParadigmParadigm 43

IOHSTRING KIND ParameterIOHSTRING KIND Parameter

IOHSTRING KIND=DISK | CDROM
File is local to the MCP environment
Located by FILENAME/TITLE and FAMILYNAME
Do not use "on" in TITLE or LTITLE!
Default is DISK

IOHSTRING KIND=VIRTUAL

StreamIOH works through another I/O Handler
Must specify IOHTITLE or IOHFUNCTIONNAME
Alternatively, use REDIRECTION parameter to specify
REDIRSUPPORT (the Redirector)
Value of the IOHSTRING parameter is passed to the
other IOH as its IOHSTRING attribute

The KIND parameter of the StreamIOH IOHSTRING attribute determines where and how StreamIOH will be
reading or writing the line-oriented text data.

Setting the KIND=DISK (the default) or KIND=CDROM parameters means that StreamIOH will be accessing
a physical file within the MCP file system. That physical file will be located by the file name attribute
specified for the virtual file. Note that the family on which the file resides must be specified using the
FILENAME attribute. Do not use an on-part when specifying the file name using TITLE or LTITLE, as that
implicitly changes the KIND of the virtual file to DISK, thus making it no longer a virtual file.

Setting the KIND=VIRTUAL parameter means that StreamIOH will not be accessing a physical file, at least
not directly. Instead it will be accessing the line-oriented data through another virtual file I/O Handler. This
could be an IOH that you write, or it could be the Redirector.

• IOHTITLE can be used to specify the other IOH by its codefile title.

• IOHFUNCTIONNAME can be used to specify the IOH by its SL function name. You should specify the
IOH library either by title or by function name, not both.

• IOHSTRING can be used to pass parameter information to the other I/O Handler's IOHSTRING file
attribute. Note that this is an IOHSTRING parameter embedded inside an IOHSTRING attribute. This
can look a little weird when you write it, but as we will see later, it enables some very useful behavior.

• REDIRECTION specified as a parameter is equivalent to the REDIRECTION file attribute. Specifying
this is a shorthand way of specifying the parameters KIND=VIRTUAL and
IOHFUNCTIONNAME="REDIRSUPPORT".

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 44

MCP-4026ParadigmParadigmParadigm 44

IOHSTRING Conversion ParametersIOHSTRING Conversion Parameters

FILEKIND

DATA

EXTDELIMITER

FORMFEEDISDELIMITER

TABINTERVAL

MARKID

SEQBASE

SEQINCREMENT

TRIM

FOLDING

FOLDCHARACTER

The rest of the parameters in a StreamIOH IOHSTRING are used to control the conversion between line-
oriented and record-oriented formats. These fall logically into a few groups, which I will discuss on the next
set of slides.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 45

MCP-4026ParadigmParadigmParadigm 45

StreamIOH and FILEKINDStreamIOH and FILEKIND

FILEKIND determines the record length
and format of a record-oriented file

Text field
Sequence number field
Mark field

StreamIOH determines FILEKIND from:
1. FILEKIND parameter in IOHSTRING attribute
2. FILEKIND explicitly set for the virtual (record) file
3. File extension in FILENAME or TITLE attribute

Uses same extensions as Editor/PWB
(.C85, .ALG, .WFL, .TXT, etc.)

The FILEKIND file attribute specifies the internal layout of records. One of its main uses is to determine the
type of compiler associated with a source or object code file. For source files, the FILEKIND determines the
size and position of the text, sequence number, and mark ID fields in a record.

StreamIOH determines the FILEKIND of the virtual file from three places, in the order of descending
priority as shown on the slide. If FILEKIND has not been specified in some other way, and the file name of
the physical file contains an extension (.TXT, .DAT, etc.), then the extension determines the FILEKIND.
StreamIOH uses the same extension codes as the Editor utility. It also recognizes the extensions used by
Programmer's Workbench (PWB, NX/Edit), which all end in "_m".

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 46

MCP-4026ParadigmParadigmParadigm 46

Basic Record FormattingBasic Record Formatting

FILEKIND=<mnemonic>
Overrides file name extension and FILEKIND attribute

Determines existence and position of sequence and
mark fields

DATA=<integer> [bytes]
Determines length of text area, default = 80
FILEKIND must resolve to DATA, CDATA, CSEQDATA
If EXTDELIMITER=UNSPECIFIED
– FILEKIND/DATA=n determines the record length
– On read, fixed-length chunks are passed to the

record area without parsing for line delimiters
– On write, no line delimiter characters are included

StreamIOH determines the FILEKIND of the virtual file from multiple places, as discussed on the previous
slide. The FILEKIND parameter in the IOHSTRING overrides any other determination of FILEKIND and
forces StreamIOH to apply the specified format to the virtual file's record area.

Records in data files do not have sequence and mark ID fields (with the exception of CSEQDATA, which has
a five-digit sequence number at the beginning of the record) and can be any length up to the system limit of
64K INTMODE units. To specify the size of a data record in bytes, the DATA parameter is used. If not
specified, the default length of data records is 80 bytes. To use the DATA parameter, the FILEKIND must
resolve to one of DATA, CDATA, or CSEQDATA; otherwise an open error will occur.

There is one important twist to accessing data files through StreamIOH. If EXTDELIMITER (discussed next)
has the value UNSPECIFIED, then FILEKIND (and for data files, DATA=n) is used to determine the record
length. On reads, StreamIOH will read fixed-length chunks from the line-oriented file and pass them to the
record area without parsing line delimiters. On writes it will write fixed-length chunks to the line-oriented file
without appending line delimiters (which means that the byte stream file will not be line-oriented – it will
contain fixed-length records written head-to-tail).

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 47

MCP-4026ParadigmParadigmParadigm 47

Delimiter Character HandlingDelimiter Character Handling

EXTDELIMITER=
UNSPECIFIED | NL | CR | LF | CRLF | CRCC

May need to set this for data files
Default UNSPECIFIED implies:
– No line delimiters recognized
– Reads fixed-length "records" from the stream file

FORMFEEDISDELIMITER=TRUE | FALSE

TABINTERVAL=<integer>
Expands tab (HT) characters to spaces
TABINTERVAL=0 disables tab expansion

Operates only when reading from stream file
Does not replace spaces with tabs on write

The StreamIOH EXTDELIMITER parameter echoes the file attribute of the same name. EXTDELIMITER
specifies the type of line delimiter used in a line-oriented text file. The mnemonic values are

• UNSPECIFIED

• NL (newline)

• CR (carriage-return)

• LF (line-feed)

• CRLF (carriage-return followed by line-feed, the Windows/DOS standard)

• CRCC (carriage-return followed by either line-feed or form-feed)

This is a physical file attribute and is stored in the MCP disk directory. StreamIOH will assume the value read
from the disk directory unless it is overridden by a logical file attribute setting or the EXTDELIMITER
parameter in IOHSTRING.

Once again, if EXTDELIMITER has the value UNSPECIFIED, StreamIOH will not know how to parse for
line delimiters, so the physical file will be assumed to not contain delimiters, and StreamIOH will simply read
and write fixed length chunks of data having a length determined by the size of the virtual file record.

The FORMFEEDISDELIMITER parameter specifies whether form-feed (ASCII hex 0C) characters in the
text stream will be recognized as line delimiters. The default is FALSE.

The TABINTERVAL parameter specifies whether horizontal tab (ASCII hex 09) characters in the text stream
will be expanded to spaces. If this parameter is not specified, or has the value zero, tab characters are passed
through as part of the text. If the parameter has a non-zero value, tab characters are replaced with spaces to
pad out the record to the next multiple of the interval. A very popular tab interval is eight. The default value is
zero.

Note that TABINTERVAL is only effective when reading from the line-oriented file. It does not cause "tab
compression" when writing to a line-oriented text file. All (non-trailing) spaces are passed through on a write
without being converted to tabs.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 48

MCP-4026ParadigmParadigmParadigm 48

Sequence and Mark FillingSequence and Mark Filling

Only apply if reading from the stream file

New mark ID and sequence value overwrite
any converted from the stream file

Size and position determined by the effective
FILEKIND value

MARKID="<string>"

SEQBASE=<integer>

SEQINCREMENT=<integer>

For effective FILEKIND values that represent record formats having sequence number and mark ID fields,
StreamIOH can supply values for these fields when records are read. Any sequence number or mark ID in the
line-oriented file will by default be passed through to the record area unless stripped off by the TRIM
parameter, discussed next.

If SEQINCREMENT is specified, the sequence numbers generated by StreamIOH will override those from the
line-oriented file. Similarly, if MARKID is specified, that value overrides any from the line-oriented file.
SEQBASE is only valid if SEQINCREMENT has a non-zero value.

The default MARKID is a null string. The default for both SEQBASE and SEQINCREMENT is 100.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 49

MCP-4026ParadigmParadigmParadigm 49

Record TrimmingRecord Trimming

Trims sequence field, mark field, and/or
trailing blanks when writing to stream file

Drops sequence or mark field from record
on read

TRIM=
NONE

BLANKS

SEQUENCE

ID

ALL (default)

StreamIOH has the ability to trim portions of a record as it is transferred between the line-oriented file and the
record area. Trimming is most often useful when writing to a line-oriented file. For FILEKIND values that
support sequence numbers, you can choose to trim them from the record before the text is transferred to the
line-oriented file. For all types of files, you can choose to trim trailing blanks from the line-oriented file. The
default is to trim everything.

Trimming can also be applied when reading from a line-oriented file. For FILEKIND values that support
sequence numbers, this causes the sequence and mark ID from the line-oriented file to be dropped and values
generated by StreamIOH to be placed in the record area.

The TRIM parameter has the following options:

• NONE – trim nothing.

• BLANKS – trim trailing blanks from the text area of the record, along with any sequence or mark ID
field present to the right of the text area.

• SEQUENCE – trim the sequence number from the record area. There are two alternatives when this is
specified:

– If the sequence number is to the left of the text area (as in COBOL), only the sequence number field is
trimmed.

– If the sequence number is to the right of the text area, the sequence and mark ID (if present) will be trimmed.

• ID – trim the mark ID field, if any.

• ALL – trim everything – sequence number, mark ID, and trailing blanks.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 50

MCP-4026ParadigmParadigmParadigm 50

Record FoldingRecord Folding

Controls mapping of long lines in the
stream file to the record file

On read, long lines from the stream file may be folded
into multiple records
On write, multiple records may be unfolded into a
single long line for the stream file
"Fold character" is placed at the end of folded records
Default is FOLDING=BLIND

Trimming and folding can conflict
It's complex – see documentation for specifics
Trimming is always applied before folding

With StreamIOH, the record area must be defined for the virtual file with a fixed maximum length. On the
line-oriented side, however, the lines can be of arbitrary length. For some files, accommodating very long
lines may make the record area inconveniently large.

To deal with this, StreamIOH supports folding of long lines into multiple records. As long lines are read from
the line-oriented file, they can be broken into pieces no longer than the size of the record area. A "fold
character" may optionally be placed at the end of the folded text in the record area to indicate that the record
has been folded and that more data from the same line will appear in subsequent records. If a line is short
enough not to require folding (or it is the last piece of a folded line), no fold character is placed in the record
area.

The documentation indicates that the default type of folding is TRUNCATE. That is incorrect – the default is
actually BLIND.

When writing to a line-oriented file, StreamIOH also supports unfolding multiple records to create one long
line. The fold character (if specified) is used to determine where in the record area the fold occurs. The
process of folding and unfolding records is symmetric, so that a record-oriented file created by folding may be
unfolded to recreate the original line-oriented file.

Some choices for the FOLDING and TRIM parameters can conflict. The interaction between these two
parameters is too complex to delve into here. See the documentation in the I/O Subsystem Guide on the
FOLDING option for more information. Keep in mind, though, that trimming is always applied by
StreamIOH before it considers a record for folding.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 51

MCP-4026ParadigmParadigmParadigm 51

Folding ParametersFolding Parameters

FOLDING=NONE | SEQUENCE | ID |
BLIND | SPACE | TRUNCATE

FOLDCHARACTER=
NONE (default)
AMPERSAND (&)
ATSIGN (@)
BACKSLASH (\)
DOLLARSIGN ($)
NUMBERSIGN (#)
PERCENTSIGN (%)
SLASH (/)
VERTICALLINE (|)

The FOLDING parameter has the following options:

• NONE – no folding or unfolding is done. On read, if a line is encountered in the line-oriented file that is
longer (after trimming is applied) than the file's record area, an I/O DATAERROR exception is returned to
the MCP application program.

• SEQUENCE – the lines in the line-oriented file are assumed to be of the exact fixed size defined by the
effective FILEKIND to contain the text area and sequence number fields. A DATAERROR exception
occurs if a line is encountered that that conflicts with this assumption.

• ID – the lines in the line-oriented file are assumed to be of the exact fixed size defined by the effective
FILEKIND to contain the text area, sequence number, and mark ID fields. A DATAERROR exception
occurs if a line is encountered that that conflicts with this assumption.

• BLIND – lines in the line-oriented file are folded in increments that are the size of the record area. If a
fold character is specified, it is inserted in the last character position of the record area. This is the
default setting (the documentation through MCP 11.1 states it is TRUNCATE – that is incorrect).

• SPACE – lines in the line-oriented file are folded in increments no larger than than the size of the record
area. The fold occurs at a point where there is a transition between space and non-space characters. The
fold character (if specified) is inserted in the text area in place of the last blank character, and the rest of
the text area field is blank.

• TRUNCATE – lines are not folded at all. If a line is read from the line-oriented file that is longer than the
record area, it is simply truncated on the right to fit in the record area.

The FOLDCHARACTER parameter determines the character to be inserted into the record area at the point that
the fold occurred. It can be any of the choices shown on the slide. The default is NONE (the documentation is
wrong about this, too).

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 52

MCP-4026ParadigmParadigmParadigm 52

Special ConsiderationsSpecial Considerations

For purely sequential I/O, stream/record
conversion is done on the fly

If a random I/O request occurs
Entire stream file is read and converted to a temporary
(hidden) fixed-length record file
All further I/O is against this temporary file
When the virtual file is closed, stream file may be
rewritten from temporary file to apply any updates

StreamIOH works internally in EBCDIC
Translation may occur between physical file and IOH
May also occur between IOH and virtual (record) file

There are a couple of special considerations when using StreamIOH.

First, we have been talking thus far about using StreamIOH for sequential access to a line-oriented byte
stream file. When used in this fashion, all conversion between the line-oriented and record-oriented format is
done on the fly as reads and writes are issued by the MCP application.

StreamIOH also supports random I/O against the line-oriented file. The problem with random I/O is that there
is no way to predict where lines in the line-oriented file occur, since they can be variable length. To handle
this, the first random I/O operation causes StreamIOH to read the entire stream file, converting it into a
temporary, hidden, fixed-length record file. All further I/O for the virtual file will occur against this temporary
file. When the virtual file is closed, the temporary file is discarded. If writes occurred to the temporary file, it
is used to recreate the line-oriented file before being discarded.

The second consideration is that StreamIOH always works internally using the EBCDIC character code.
Depending on the INTMODE of the virtual file, translation may occur between the MCP application's record
area and StreamIOH. Depending on the EXTMODE of the physical file, translation may also occur between
StreamIOH and the physical file. In most cases involving line-oriented text files, however, this translation
something you want to have happening.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 53

MCP-4026ParadigmParadigmParadigm 53

More StreamIOH ExamplesMore StreamIOH Examples
RUN MY/PROG; FILE FIXED (

KIND=VIRTUAL, IOHFUNCTIONNAME="STREAMIOH",
LFILENAME=MYSTREAM.TXT, FAMILYNAME=PACK,
IOHSTRING="FILEKIND=DATA, DATA=256," &

"FOLDING=TRUNCATE");

RUN YOUR/PROG; FILE SOURCE (
KIND=VIRTUAL, IOHFUNCTIONNAME="STREAMIOH",
FILENAME=UPDATE.C85, FAMILYNAME=DEV,
IOHSTRING="KIND=CDROM," &

"TRIM=ID, FOLDING=NONE," &
"SEQBASE=100100, SEQINCREMENT=100," &
"MARKID=""UPDATE""");

This slide shows two more examples of file attribute equations that invoke StreamIOH. In the first example,
the line-oriented file is considered to be just textual data, and is converted to a fixed-length, 256 character
record area.

In the second example, a line-oriented file is read from CDROM and converted to COBOL-85 record format
(as determined by the extension on the file name). Any mark ID from the line-oriented file is discarded and
replaced by the literal "UPDATE". The records are resequenced 100100+100 as they are read. Since
FOLDING=NONE, if lines longer than the COBOL-85 record length are read, a DATAERROR is returned to
the MCP application. The TRIM=ID parameter is redundant in this example, as the MARKID parameter
causes any mark ID field read from the line-oriented file to be replaced according to the parameter value
supplied.

[Demo here]

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 54

MCP-4026ParadigmParadigmParadigm 54

Using StreamIOH with RedirectorUsing StreamIOH with Redirector

StreamIOH can use Redirector as its
"physical file"

Allows MCP apps to access text files on
remote shares as record-oriented files

In StreamIOH's IOHSTRING:
Specify the REDIRECTION parameter
Specify the the Redirector IOHSTRING attribute
parameters in the StreamIOH IOHSTRING parameter
Specify StreamIOH's FILENAME/TITLE attribute as
the absolute or relative UNC path to the remote file
Can use credentials and NXCONFIG files

Since StreamIOH can be configured to use another virtual file I/O Handler to access the line-oriented data, it
is possible to team StreamIOH with the Redirector. This allows you to easily configure MCP applications so
they access line-oriented text files directly on network shares. StreamIOH provides some special
IOHSTRING parameters to make this convenient.

You can invoke the Redirector through StreamIOH by specifying KIND=VIRTUAL and
IOHFUNCTIONNAME="REDIRSUPPORT" as parameters in the StreamIOH IOHSTRING attribute.
Alternatively, you can just specify the REDIRECTION parameter in IOHSTRING, which will set the other
two parameters for use with the Redirector.

The problem with using both StreamIOH and Redirector together is that they both generally require
parameters to be specified in their IOHSTRING attributes. StreamIOH addresses this by providing an
IOHSTRING parameter inside its IOHSTRING file attribute. The string specified with the IOHSTRING
parameter is simply passed by StreamIOH to the Redirector's IOHSTRING file attribute. The main thing you
need to be careful of with this feature is that you count all the quotes correctly when you specify the attribute
values.

The file name attribute (FILENAME, LTITLE, etc.) is simply passed by StreamIOH to the Redirector. You
can use either the relative path naming method, or the *UNC absolute path naming method.

You can also use credentials file and NXCONFIG files with the StreamIOH/Redirector combination the same
way you do with Redirector alone.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 55

MCP-4026ParadigmParadigmParadigm 55

Using StreamIOH with RedirectorUsing StreamIOH with Redirector

MCP
App FIB

MCP Logical I/O

StreamIOH

Network
Share

FIB

MCP
Networking

"Virtual" (Record) File

"Physical" File

"Logical" (Stream) File

REDIRSUPPORT

This slide shows how StreamIOH and the Redirector are combined to allow an MCP application to read or
write line-oriented byte stream files on a network share as if they were record-oriented files.

The MCP application opens a virtual file that connects to the StreamIOH library. From the KIND=VIRTUAL
and IOHFUNCTIONNAME parameters in its IOHSTRING attribute, StreamIOH knows to configure its
internal file declaration as a Redirector file.

The IOHSTRING parameter supplied by the application in the virtual file's IOHSTRING attribute is used to
set the value of the Redirector's IOHSTRING attribute. This gives Redirector the information necessary to
open an SMB connection to the network share and access the remote line-oriented file.

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 56

MCP-4026ParadigmParadigmParadigm 56

StreamIOH/Redirector ExampleStreamIOH/Redirector Example
RUN MY/PROG; FILE FIXED (

KIND=VIRTUAL, IOHFUNCTIONNAME="STREAMIOH",
LFILENAME=SUBDIR/MYSTREAM.TXT,
IOHSTRING="REDIRECTION," &

"FILEKIND=DATA, DATA=120," &
"EXTDELIMITER=NL," &
"IOHSTRING=""SERVER=WINFS1 " &

"SHARE=PUBLIC TIMEOUT=15 " &
"CREDENTIALS=FOO/BAR""");

StreamIOH
IOHSTRING attribute

Redirector
IOHSTRING attribute

This slide shows an example of how you would declare the virtual file when teaming StreamIOH with
Redirector. Everything is the same as we have seen previously for StreamIOH file attributes, except for two
things in the IOHSTRING attribute

• The REDIRECTION parameter is specified to cause StreamIOH to read and write from a Redirector file
instead of a physical file within the MCP environment.

• The IOHSTRING parameter is specified inside the IOHSTRING attribute. The value of this parameter
is passed to the Redirector, which uses it to establish the connection to the network share.

[Demo here]

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 57

MCP-4026ParadigmParadigmParadigm 57

ReferencesReferences

MCP I/O Subsystem Guide
Section 28 – Virtual Files
Section 29 – The Redirector
Section 30 – StreamIOH

MCP File Attributes Reference Manual

"Using Stream Files" UNITE presentation
http://www.digm.com/UNITE/2001

"Using Stream Files" article in Gregory's
ClearPath/A-Series Technical Journal, volume 16
#1, Jan/Feb 2002

Finally, here are several references to more information on the Redirector and StreamIOH.

• The primary resource for these facilities is the MCP I/O Subsystem Guide, sections 28 through 30.

• Since byte stream files, the Redirector, and StreamIOH are all configured using file attributes, the File
Attributes Reference Manual is another valuable resource.

• I presented a detailed talk on stream files at the 2001 UNITE conference in Phoenix. That presentation
and several sample programs are available on our web site at the link shown.

• Don Gregory later invited me to turn that presentation into an article, which was published in the
January/February 2002 issue of his Technical Journal.

http://www.digm.com/UNITE/2001

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 58

MCP-4026ParadigmParadigmParadigm 58

More ReferencesMore References

"The Care and Feeding of IOHANDLERS"
(2 articles) in Gregory's ClearPath/A-Series
Technical Journal, volume 16 #7, Oct/Nov 2002

Sample files for this presentation
http://www.digm.com/UNITE/2007

Here are some additional references:

• Don Gregory wrote a pair of articles on using and programming for virtual file I/O Handlers, which were
published in the October-November 2002 issue of his Technical Journal.

• This presentation, along with several sample programs and WFL jobs that illustrate use of both the
Redirector and StreamIOH will be available on our web site shortly after the conference ends at the link
shown on the slide.

http://www.digm.com/UNITE/2007

Using the Redirector and StreamIOH

2007 UNITE MCP-4026 59

ENDEND

Using Redirector and StreamIOHUsing Redirector and StreamIOH

2007 UNITE Conference

Session MCP-4026

