
Using MCP EMAIL

2009 UNITE MCP-4005 1

Using
MCP EMAIL

UsingUsing
MCP EMAILMCP EMAIL

Paul Kimpel
2009 UNITE Conference

Session MCP-4005

Wednesday, 11 November 2009, 10:30 a.m.

Copyright © 2009, All Rights Reserved Paradigm Corporation

Using MCP EMAIL

2009 UNITE Conference
Minneapolis, Minnesota

Session MCP-4005

Wednesday, 11 November 2009, 10:30 a.m.

Paul Kimpel

Paradigm Corporation
San Diego, California

http://www.digm.com

e-mail: paul.kimpel@digm.com

Copyright © 2009, Paradigm Corporation

Reproduction permitted provided this copyright notice is preserved
and appropriate credit is given in derivative materials.

Using MCP EMAIL

2009 UNITE MCP-4005 2

MCP-4005 2

Presentation TopicsPresentation Topics

� Overview of Email Concepts

� Email Sending Methods for the MCP

� MCP OBJECT/EMAIL Utility
� What is it?
� Installation and configuration
� Running the utility
� Parameter string syntax
� SEND options
� Using the EMAIL API
� Errors, retry, and troubleshooting

� So, What Good Is It?

Today I would like to discuss what is to me one of the nicest facilities of the MCP – the ability to send email
messages from MCP-resident applications.

I'll start with a brief overview of email in general – the components, protocols, and message formats used.

Next, I'll briefly discuss a few methods for sending email from MCP applications, using both bundled and
third-party solutions.

The bulk of this presentation will be devoted to one of those methods, the OBJECT/EMAIL utility that is
bundled with the standard MCP release. I will discuss how to install and run the utility, the components of its
command parameter syntax, options it supports for sending email messages, how it can be called from
application programs in addition to run as a utility program, and how it handles errors and retry operations.

I will finish with some examples of OBJECT/EMAIL put to use in a real environment.

Using MCP EMAIL

2009 UNITE MCP-4005 3

Overview of Email ConceptsOverview of Email Concepts

To begin, let us briefly review the concepts and components that make email in general work.

Using MCP EMAIL

2009 UNITE MCP-4005 4

MCP-4005 4

What is Email?What is Email?

� "The killer app of the Internet"

� A store-and-forward messaging facility
� Decentralized (like the rest of the Internet)
� Open standards and protocols
� Awesomely scalable
� Generally runs on top of TCP/IP

� Components of email systems
� MTA – Mail Transfer Agents (mail exchangers)
� MDA – Mail Delivery Agents (mailbox managers)
� MUA – Mail User Agents (end-user clients)

� MTAs and MDAs are often combined

Email has been described as the "killer app" of the Internet. There are lots of wonderful applications of
Internet technology, but email remains the most significant one. We could probably do without the Web,
although that would be a great loss. We could probably not do without email at this point.

Email is a store-and-forward messaging facility. It is like teletype and fax messaging in that respect, and
unlike telephones. A great deal of its utility and popularity comes from the fact that the receiver does not need
to be available when the sender wishes to communicate. Messages are stored until the receiver gets around to
checking for them.

One thing that has made email a success is that it is based on open standards. No one owns email, and there is
a vibrant collection of both proprietary and open source solutions for creating, sending, receiving, and reading
email messages.

Another thing responsible for its success is that email is awesomely scalable. The whole planet now
communicates using message formats and standards that, while they have been enhanced over the years, have
not substantially changed since the early 1980s. Part of this success is due to the underlying openness and
scalability of TCP/IP and the Internet, but much is due to the original design of the email formats and
protocols.

Email systems are composed of three basic components:

• Mail Transfer Agents, or MTAs. These are also known as "mail exchangers," and are the programs
responsible for sending and routing email messages to their destinations. The protocols were originally
designed to allow mail to be routed through a web of interconnected MTAs. That can still happen within
large organizations, but with the advent of the Internet, the much more common case today is that the
sending MTA directly contacts the receiving MTA without needing to route a message through
intermediaries.

• Mail Delivery Agents, or MDAs. These are programs that manage mail boxes and deliver mail to end
users. MTAs either deliver mail to MDAs or deposit mail directly in mail boxes for which they are the
receiving agent.

• Mail User Agents, or MUAs. These are end-user client programs used to read and compose email
messages. Microsoft Outlook, Mozilla Thunderbird, and Eudora are common examples of MUAs.

It is not uncommon to see the functions of MTAs and MDAs combined in a single package. Microsoft
Exchange and Eudora WorldMail are examples of this. On Unix/Linux systems, the functions are often
implemented separately, with SendMail and Postfix being examples of MTAs, and Dovecot, maildrop, and
procmail being examples of MDAs.

Using MCP EMAIL

2009 UNITE MCP-4005 5

MCP-4005 5

Email Agents and ProtocolsEmail Agents and Protocols

� SMTP – Simple Mail
Transfer Protocol
� Mail exchange among MTAs
� Outbound mail from MUA to MTA

� POP3 – Post Office Protocol
� Deliver mail from MDA to MUA
� Off-line, client-based folders

� IMAP4 – Internet Message
Access Protocol
� Deliver mail from MDA to MUA
� On-line, server-based folders

� NNTP – Network News
Transfer Protocol

MUA

MTA

MDA

Mail
Boxes

Internet

POP3,
IMAP4

SMTP

SMTP

MTA

MTA

MTA

MTA

This slide shows the relationship between email protocols and the software components.

• SMTP (Simple Mail Transfer Protocol) is the scheme used to communicate among MTAs. As
mentioned earlier, most sending MTAs can now contact the destination MTAs directly through the
Internet, but SMTP has facilities to allow forwarding of messages through a web of MTAs. Some MTAs
are able to deposit incoming messages directly into the receiving user's mail boxes; others pass the
messages to a delivery agent for mailbox management. SMTP is also used by user agents to send
outgoing emails. Note that SMTP is not used by clients for incoming emails, which is why you usually
need to configure the sending and receiving servers separately in your email client.

• POP3 (Post Office Protocol, version 3) is a scheme used by MDAs and MUAs for delivering incoming
messages to end users. Like mail boxes at a post office, users "pick up" their mail when they read it,
usually transferring the messages to their local system and removing it from the MDA's storage.

• IMAP4 (Internet Message Access Protocol) is an alternate scheme used by MDAs and MUAs for
delivering incoming messages to end users. Unlike POP3, it maintains mailbox messages on the server,
and is commonly used with roaming users or web-mail clients.

• NNTP (Network News Transfer Protocol) is strictly speaking not an email protocol, but has many
features in common with email (particularly message formats), and is often implemented in email server
software. This is the protocol used with news groups (e.g., comp.sys.unisys) to distribute and access
news postings.

Using MCP EMAIL

2009 UNITE MCP-4005 6

MCP-4005 6

Email Message FormattingEmail Message Formatting

� Simple line-oriented text format
� CR-LF line delimiters
� Can be stored as an ordinary text file
� Originally RFC 822 … now 5322

� Headers
� Name-value pairs, one per line
� Terminated by a blank line (CR-LF only)

� Body
� Follows headers, format determined by Content-Type
� Attachments

– Part of the message body
– Segmented by special delimiter lines, local headers

An important facet of email is the format of email messages. A basic message has the same format as a
Windows text file – lines of text delimited by carriage-return/line-feed characters. Email messages can be
stored as ordinary text files, and in fact that is how messages were originally composed. You created a file
with your favorite (probably Unix) text editor, and passed that file to a program that would send it. Today's
GUI email clients are a lot easier to use, and don't require you to know the formatting rules, but under the
hood what they generate is a text file format.

The format for Internet email was originally specified by RFC 822. That has now gone through a few
revisions, and the current standard is RFC 5322, but the format of email messages is still often referred to as
RFC 822.

Email messages consist of two parts: headers and a body. Headers are name/value pairs, delimited by a colon
and space character. The basic headers are To:, From:, Subject:, and Date:, but there are now a very large
(and extensible) number of header types that can be included in a message. Headers must begin in column 1
of a line. They can be continued on following lines by starting the continuation lines with at least one
character of white space.

The headers describe the routing and attributes of a message, while the body is the payload of the message.
The headers are terminated by a single blank (CR/LF only) line. Everything after that blank line is body.

By default, the body consists of plain lines of text. Certain headers (particularly Content-Type:) can specify
that the body has a different format, such as HTML or (the one beloved by spammers) an image. Attachments
are also part of the body, and are delimited by special "boundary" lines. An attribute of the Content-Type:
header specifies the boundary line, which must be a string that is not otherwise present in the initial body or
any of the attachments. Each attachment can itself have a set of local headers that affect only that attachment.

Non-text attachments are often encoded in a special format, called Base-64, to avoid problems with binary
data being transmitted in what is really a text-only medium. Base-64 represents every six bits of the original
attachment data as one eight-bit printable ASCII character (26 = 64, hence the name).

Using MCP EMAIL

2009 UNITE MCP-4005 7

MCP-4005 7

Sample RFC 822/5322 MessageSample RFC 822/5322 Message
Received: from fwd1d.spamh.com (fwd1d.spamh.com [66 .235.180.91])

by s1.digm.com (Postfix) with ESMTP id 98157C38510
for <paul.kimpel@digm.com>; Sun, 9 Aug 2009 20:43: 35 -0700 (PDT)

Message-ID: <4A7F975F.6090604@sds.com>
Date: Sun, 09 Aug 2009 20:43:27 -0700
From: "Scott O'Connell" <scotto@sddx.com>
User-Agent: Thunderbird 2.0.0.22 (Windows/20090605)
MIME-Version: 1.0
To: Paul Kimpel <paul.kimpel@digm.com>
Subject: Re: New router, no VPN to HQ site
In-Reply-To: <4A64B990.1060100@digm.com>
Content-Type: multipart/alternative;

boundary="------------090800070409060709010302"

This is a multi-part message in MIME format.
--------------090800070409060709010302
Content-Type: text/plain; charset=ISO-8859-1; forma t=flowed
Content-Transfer-Encoding: 7bit

Hi Paul,

I just got back from vacation and got the new ERP c onversion mostly
completed. Perhaps we can work on this together th is week?
...
--------------090800070409060709010302
Content-Type: text/html; charset=ISO-8859-1
Content-Transfer-Encoding: 7bit

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transi tional//EN">
<html>
...

Headers

Attachment
#1

Attachment
#2

Body

Blank line

This slide shows an example of a raw email message. The headers and attachment data have been trimmed
somewhat to fit on the slide, but this example shows the essential format and features.

Note the headers followed by a blank line. The body of this message consists of a single line of text
(indicating the real payload is in the attachments), followed by two attachments.

The arrangement of this message is a common one for email sent as HTML. The client program that
composed the message has included the user's message as plain text in the first attachment and as HTML in
the second. This allows a receiving user who may not have an HTML-capable email client (rare, these days)
to read the message conveniently.

Using MCP EMAIL

2009 UNITE MCP-4005 8

Email Sending Methods
for the MCP

Email Sending Methods
for the MCP

With that overview of email concepts, let us now talk about methods available to send email from MCP
systems.

Using MCP EMAIL

2009 UNITE MCP-4005 9

MCP-4005 9

Available Methods for Sending EmailAvailable Methods for Sending Email

� Microsoft IIS "Pickup" folder

� Enterprise Output Manager (EOM)

� Goldeye Software products

� OBJECT/EMAIL utility

� Do-your-own-thing
� Custom programming through TCP/IP ports
� Goldeye and OBJECT/EMAIL work this way

There are currently five methods that you can use to send email from an MCP system. If there are more, I am
not aware of them.

I will talk about the first three in this section of the presentation, and the remainder of the presentation will
focus on the fourth, the OBJECT/EMAIL utility.

The last item, "do your own thing," is there to recognize that email is simply a process of sending data over a
TCP/IP connection. The basic SMTP protocol is not that difficult to use, and it's possible to create a solution
of your own by programming TCP port files or sockets. In fact, this is exactly what the Goldeye and
OBJECT/EMAIL products do. To give you an idea of the relative simplicity of the basic email protocols, the
implementation of OBJECT/EMAIL for MCP 53.1 is only 4K lines of DCALGOL.

Using MCP EMAIL

2009 UNITE MCP-4005 10

MCP-4005 10

Microsoft IIS "Pickup" FolderMicrosoft IIS "Pickup" Folder

� IIS includes a well-featured SMTP server
� MTA with send and receive capability
� Supports CDO components
� Entirely separate from Exchange
� Configured through the IIS administration interface

� "Pickup" folder
� Typically C:\Inetpub\mailroot\Pickup
� How it works

– Deposit a text file in RFC 822/5322 format in folder
– IIS detects file's presence, attempts to send it
– File is removed from Pickup folder

The first method for sending email from an MCP system is an old one I first learned about from an article in
the September 2001 issue of Gregory's A-Series/ClearPath Technical Journal. David Erikson described a
technique using the "Pickup" folder feature of Microsoft Internet Information Server (IIS).

IIS includes a reasonably well-featured SMTP server. It is no replacement for Exchange, but it does have both
send and receive capability. It's primary purpose appears to be support for Microsoft's Collaboration Data
Objects (CDO) mechanism. This allows you to send email from Windows applications, and particularly, from
web-based applications running on the server. The SMTP component of IIS is configured from the IIS
administration interface, which is an MMC plug-in.

IIS SMTP uses a number of folders to keep track of messages. The default location for these folders is
C:\Inetpub\mailroot . Under that folder is a sub-folder named Pickup . The way it works is really
simple. You compose an email message in RFC 822/5322 format, and move or save the message as a text file
in the Pickup folder. IIS detects the file's presence, parses the message, and if there are no errors, sends it.
After being sent successfully, the original text file is removed from the Pickup folder.

Using MCP EMAIL

2009 UNITE MCP-4005 11

MCP-4005 11

Using IIS Pickup from the MCPUsing IIS Pickup from the MCP

� It's really simple –
� Create a file in MCP app in RFC 822/5322 format
� Must be a byte stream file (can use STREAMIOH)
� Transfer or store it in the IIS Pickup folder

� How does the file get to the Pickup folder?
� In short, any way you can
� Method 1: FTP (requires FTP server on Windows)

– Create stream file on MCP
– FTP to the Windows server

� Method 2: the Redirector
– Share the Pickup folder on the network
– Create and write the stream file directly from the

MCP using Redirector (+ optionally STREAMIOH)

So how does this Pickup method work with the MCP. That is also really simple. You create a file in your
MCP application with the appropriate RFC 822/5322 format and transfer it to the Pickup folder on the
Windows server that is running IIS. IIS will then send it.

Note that the file must be in text file format, which in MCP terms means it must be a byte-stream file. You
can create such files directly, or you can use the STREAMIOH virtual file I/O handler to transform fixed-
length record I/O to byte-stream format.

Once you have the message in text file format, how do you get it to the Pickup folder on the IIS server? The
MCP has lots of methods for communicating with Windows servers. In this case the two most likely
candidates are FTP and the Redirector.

• Using FTP, you would create the message in a file on the MCP. It could be in stream or record format,
as FTP has the ability to convert fixed-length record data on the MCP to text file format on the
destination FTP server. To make this method work, you would first need to define the IIS Pickup
folder as a valid FTP destination. FTP is also configured using the IIS administration interface. This is
the technique described in David Erikson's article.

• The second method is the one I prefer. Simply share the IIS Pickup folder on the network. Then write
the message directly to that shared folder from your MCP application using the Redirector IOH, possibly
in conjunction with STREAMIOH. There is a small Algol program in the sample files accompanying
this presentation that illustrates the technique.

Using MCP EMAIL

2009 UNITE MCP-4005 12

MCP-4005 12

Enterprise Output ManagerEnterprise Output Manager

� EOM (née DEPCON)
� Service that runs on a Windows server
� A Swiss Army knife for print distribution
� Extensive print reformatting and transformation features
� Forms overlay, PDF generation, custom processing
� Accessed from MCP as one or more PrintS printers

� EOM can transform print jobs into email
� Uses MAPI (deprecated) or CDOSYS
� Requires access to an MTA (IIS SMTP will do)
� All EOM features can be applied – print attributes, DDA,

PDF, splitting, multiple destinations, custom jobs

� EOM can also receive and route email

The second method for sending email from MCP applications involves Enterprise Output Manager (EOM),
formerly known as DEPCON. In its current implementation, EOM runs as a Windows service on a separate
processor. It is primarily a print distribution facility, but also has extensive features for reformatting and
transformation of print data. It can do electronic forms overlay, generate PDF documents, and do custom
reformatting of print data. It is typically accessed from MCP applications by defining a virtual printer device
in the MCP Print System and directing print requests to that printer.

A basic version of EOM, the Departmental Edition, is bundled with the standard Clearpath MCP software
release. The ability to generate PDF documents and do custom reformatting of print data require extra-cost
add-ons, but that bundled version does have the ability to transform print jobs into email messages. In order to
do that, the Windows server on which EOM runs must have MAPI (which is deprecated, but still works) or
CDOSYS (which has been bundled with Windows since Windows 2000). The EOM server must also have
access to an email server (an MTA). A server running IIS SMTP is more than adequate for this purpose.

Email output functions as a physical printer in EOM. There is also an email job type which can be activated
from file masks. All EOM features can be applied to print requests that are output to email destinations – print
attributes, data dependent attributes (DDA), PDF output, print stream splitting, multiple destinations, and
custom jobs.

EOM has an additional feature that none of the other methods discussed here possess – it can also receive and
route email messages as if they were incoming print jobs.

Using MCP EMAIL

2009 UNITE MCP-4005 13

MCP-4005 13

EOM Email from the MCPEOM Email from the MCP

� Define one or more EOM email printers
� Virtual printer object in EOM
� Type is E-mail
� Set to unlocked, available, Paper Type="ANY"
� Also configure EOM global email/CDOSYS properties in

Configuration Explorer > Tools > Options > Email

� Define an MCP PrintS printer for EOM

� Route MCP print streams using File Masks
� Create Email Jobs having Email Attributes, or
� Create Print Jobs with an Email printer destination

– EOM routing is determined from MCP file attributes
– NOTEattribute specifies To:, CC:, Subject:, options

Using email with EOM requires a little setup. There are a couple of ways to do this, but the easiest is to define
a "physical printer" that represents a virtual printer object in EOM. The type of physical printer is "E-mail."
You will probably want to configure this EOM printer as unlocked, available, and having a Paper Type of
"ANY".

You must also configure the global EOM email properties for CDOSYS (I recommend that you avoid the
MAPI interface, especially on EOM versions 7.0 and later). CDOSYS properties are configured in the
Configuration Explorer under the Tools > Options > Email menu. This is probably the trickiest part of the
configuration, as the settings depend on your local email environment. I have found these settings to work
well on EOM 7.0 and 7.1:

• http://schemas.microsoft.com/cdo/configuration/sendusing = 2

• http://schemas.microsoft.com/cdo/configuration/smptserver = <your SMTP server IP address>

• http://schemas.microsoft.com/cdo/configuration/smtpserverport = 25

• outputmanager.bypasssmtprecipientcheck = True

• outputmanager.from = <an email address>

Improvements to the CDOSYS configuration process are reputed to be implemented in EOM 8.0.

Next, you need to define a printer in the MCP Print System to send print requests to EOM. You can use an
existing EOM printer for this if you have one, but I find it easier to set up a separate MCP printer just for
EOM email requests. The EOM documentation contains a clear description for the steps to do this.

Finally, you configure file masks in EOM to route incoming print jobs to email destinations. You can create
email jobs with email attributes (an email attribute is similar to an EOM print attribute), or you can simply
route print jobs to the EOM email printer. In this latter case, the MCP NOTEfile attribute can contain a string
defining the To:, CC:, Subject:, and other email headers. The following slide shows an example of this.

Using MCP EMAIL

2009 UNITE MCP-4005 14

MCP-4005 14

Sample WFL to Email through EOMSample WFL to Email through EOM
BEGIN JOB EMAIL/VIA/EOM;
NOJOBSUMMARYIO;
JOBSUMMARY = SUPPRESSED;

RUN *SYSTEM/DUMPALL ("LIST WFL/UTIL/EMAIL/VIA/EOM");
FILE LINE (DESTINATION="DCMAIL",

NOTE="DEPCON-EMAIL=PAUL.KIMPEL@DIGM.COM;" &
"alterego@some.org;" &

"DEPCON-ESUBJECT=EOM Email test;" &
"DEPCON-EMAIL-EXT=TXT");

? END JOB

This slide shows a simple WFL job that runs DUMPALLto send a listing to an EOM email printer. The printer
on the MCP side has been defined as DCMAIL. The nice thing about the EOM email interface is that it can be
activated using just MCP file attributes. You can turn any print request into an email message simply by
setting the attributes that will trigger the appropriate routing in the EOM file masks (in this case, EOM has
been configured to use DESTINATION for that purpose), and putting the email routing information in the
NOTEattribute.

• DEPCON-EMAILis a semicolon-delimited list of "to" addresses.

• DEPCON-ESUBJECTdefines the text of the message subject line.

• DEPCON-EMAIL-EXTindicates the type of formatting that will be applied to the print data. In this
case, the MCP print job will be formatted as a plain-text attachment.

Configuration of MCP printers for use with EOM and the contents of the NOTEattribute for EOM print
requests are documented in the Enterprise Output Manager for Clearpath OS2200 and Clearpath MCP
Configuration and Operations Guide(7850 4362).

Using MCP EMAIL

2009 UNITE MCP-4005 15

MCP-4005 15

Goldeye Software ProductsGoldeye Software Products

� Three products for the MCP environment
� PrintMailer
� MailCall
� Print2Web

� Implements a send-only MUA for the MCP
� Entirely MCP resident
� No Windows server required
� Not a mail server – requires access to an SMTP MTA
� Nicely integrated with the MCP Print System
� Supports forms overlay (RTF or PDF template)
� Supports multiple formats (text, HTML, RTF, PDF)
� Implements native PDF generation with encryption (!)

The third method for sending email from MCP systems uses a software product from Goldeye Software, Inc.
The Goldeye product is a suite of three independent but interrelated packages, named PrintMailer, MailCall,
and Print2Web.

Each of these packages implements a send-only email client (MUA) that runs in the MCP environment.
Unlike EOM, the packages run entirely within the MCP environment, and no separate Windows server is
required. The Goldeye packages are not a mail server, however, and still require access to an SMTP MTA in
order to work.

The Goldeye packages were written specifically for the MCP and integrate nicely with its facilities, especially
the Print System. They can be used to format MCP print data with forms overlays (with the form template
coming from either a Microsoft RTF document or a PDF document). It also supports multiple output formats,
including HTML, Microsoft RTF, and PDF.

One very impressive feature of the Goldeye suite is that PDF output is built in. The generation of PDF output
(including encryption) is done entirely using native MCP code.

Using MCP EMAIL

2009 UNITE MCP-4005 16

MCP-4005 16

Overview of Goldeye FeaturesOverview of Goldeye Features

� PrintMailer
� Print driver/IOH for formatting and sending email
� Accessed as an MCP Print System printer
� Email addressing and formatting configured through

– Printer file attributes
– Custom PAGECOMPparameters

� MailCall
� SMTP API (library) for MCP apps
� Can also be run as a program for simple messaging

� Print2Web
� Print driver/IOH for generating web pages
� Outputs to MCP file system or a network share

The Goldeye PrintMailer package is a printer driver and I/O handler for the MCP Print System. You define a
virtual MCP printer and specify PrintMailer as its IOH. MCP applications then direct print requests to this
printer. Addressing and other output options are configured entirely through MCP printer file attributes. In
particular, PrintMailer supports a number of custom PAGECOMPparameters to control the routing and
formatting of email output.

MailCall is an API that can be called from MCP applications to send email messages directly, bypassing the
need to generate a printer file. It normally functions as a library, but can also be run as a program, accepting a
parameter string to control the message composition and formatting. Thus, it can be used for such things as
notification messages from WFL jobs. This capability is similar to the OBJECT/EMAIL utility we will be
discussing later in the presentation.

The Print2Web product is similar to PrintMailer, in that it functions as a printer driver and IOH for the print
system. Instead of generating email messages, however, it reformats MCP print requests into files that are
suitable for posting to a web site, allowing users to view printer output as web pages. In addition to output as
HTML, Print2Web also supports PDF documents. The output files can be stored within the MCP file system,
or written to a shared network folder on an external web server.

More information is available on these packages from Goldeye at http://www.goldeye.com

Using MCP EMAIL

2009 UNITE MCP-4005 17

OBJECT/EMAIL UtilityOBJECT/EMAIL Utility

With that overview of three methods for sending email from MCP applications, the rest of this presentation
will focus on a fourth method, the OBJECT/EMAIL utility program.

Using MCP EMAIL

2009 UNITE MCP-4005 18

MCP-4005 18

OBJECT/EMAILOBJECT/EMAIL

� MUA utility and API for the MCP
� Bundled with the standard IOE
� Initially available in MCP 7.0 / SSR 48.1 (2002)
� Send-only, supports basic email and NNTP messages
� Not a mail server – requires access to an SMTP MTA
� Can be run as a program or called as a library
� Supports IPv6 addressing starting with MCP 53.1

� Features and interface based on old
"A Series Mail" product
� Last released with MCP 6.0
� Was a full email system, MTA + MDA + MUA
� Originally BNA-based – SMTP added later

OBJECT/EMAIL is a codefile that functions as both a utility program and an API (library) for MCP
applications. It is bundled with the standard Clearpath IOE. It was initially released with MCP 7.0 / SSR 48.1
in 2002.

OBJECT/EMAIL is a send-only email client (MUA). It supports the composition of basic email messages. It
also has the ability to post messages to a news group using NNTP. It is not a mail server, and like the other
email sending methods we have discussed thus far, requires access to an SMTP server (MTA) in order to
function.

Starting with MCP 53.1, OBJECT/EMAIL supports IPv6 addressing.

The features and interface for this program are based on an older product, A Series Mail, which was last
released with MCP 6.0. That product was a full email system, supporting MTA, MDA, and MUA roles. A
Series Mail was originally BNA-based, with an SMTP interface being added later. Only the SMTP MUA
sending capabilities have been carried forward into OBJECT/EMAIL. If you used A Series Mail, you will
probably recognize several features in OBJECT/EMAIL.

Using MCP EMAIL

2009 UNITE MCP-4005 19

MCP-4005 19

A Quick DemoA Quick Demo
BEGIN JOB EMAIL/TEST;
NOJOBSUMMARYIO;

RUN *OBJECT/EMAIL (" SEND PAUL.KIMPEL@DIGM.COM & " &
" PAUL.KIMPEL@ATT.NET" &

" //MCP Email test " & % the subject line
" //This is a test of the " & % the message body

" OBJECT/EMAIL utility on the " &
" Unisys MCP system. ");

FILE BODY = WFL/UTIL/EMAIL/TEST; % more body from a file
? END JOB

u email send paul.kimpel@digm.com & paul.kimpel@att.net//
MCP Email test//This is a test of the OBJECT/EMAIL utility
on the Unisys MCP system. ; file body=wfl/util/email/test

CANDE version:

Here is a quick illustration of OBJECT/EMAIL in action. The WFL job on this slide runs OBJECT/EMAIL
to send a simple message. The utility is controlled by a string parameter. The components of this parameter
are:

• The SENDcommand indicates that the program is to compose and send an email message (the
alternative to this is SUBMIT, which posts a message to a news group).

• The next item in the parameter string (before the first "&") is a list of To: addresses. In this example,
there is only one To: address.

• Following the first "&" (the one inside the quotes – the ones outside the quotes are of course WFL string
concatenation operators) is the CC: list. Again, there is only one address in this list.

• The first "// " terminates the addressing portion of the parameter string. Following that is the subject
line of the message.

• Following the second "// " is the body of the message.

• The file equation for BODYspecifies that additional text for the body of the message is to be taken from
the indicated file. This text will be appended to the body text in the parameter string.

Using this data, OBJECT/EMAIL will compose an RFC 822/5322 message and send it to its MTA. How it
knows what that MTA is will be discussed shortly.

The second half of the slide shows an equivalent version of the WFL job using the CANDE Utility command.
In this form, it's a little easier to see the structure of the parameter string, as the quotes and string
concatenation operators have been eliminated. Email addresses are case-insensitive, so this second execution
of the utility performs identically to the first.

Using MCP EMAIL

2009 UNITE MCP-4005 20

MCP-4005 20

Installation and ConfigurationInstallation and Configuration

� Installed by Simple Install process
� *OBJECT/EMAIL codefile
� SL EMAILSUPPORT = *OBJECT/EMAIL ON DISK

� Requires global configuration
� *INSTALLATION/OPTIONS file
� Alternatively, WFL MODIFYattributes of port files

– SMTP
– NNTP
– ORGANIZATION

� Requires per-user configuration
� At a minimum, sender email address must be defined
� Other options specify defaults

OBJECT/EMAIL requires a small amount of configuration. Before describing the rest of its capabilities, let
us discuss how it is installed and configured in the MCP environment.

The program is typically installed by the Simple Install mechanism. That installation process simply copies
the OBJECT/EMAIL codefile to the system and configures the system library function name
EMAILSUPPORTto reference that codefile.

Once installed, OBJECT/EMAIL requires a set of global configuration settings for your email environment.
There are two ways to do this:

• Create a *INSTALLATION/OPTIONS file. This is the recommended method, and the only one that
will be discussed here, starting on the next slide.

• Modify the attributes of the SMTP, NNTP, and ORGANIZATIONfiles in the OBJECT/EMAIL codefile
using WFL MODIFY. See the documentation for instructions on how to do this.

After the global configuration is established, a small amount of configuration is required for each user who
will be sending emails. At a minimum, the sender's email address must be defined to OBJECT/EMAIL.
There are a number of other per-user options that can be specified, as we will discuss later.

Using MCP EMAIL

2009 UNITE MCP-4005 21

MCP-4005 21

*INSTALLATION/OPTIONS File*INSTALLATION/OPTIONS File

� Global email configuration
� SEQDATAfilekind
� Stored on same family as OBJECT/EMAIL

� Options
� EMAIL MAILSERVER = <server address>
� EMAIL ALTMAILSERVER = <server address>, …
� EMAIL NEWSSERVER = <server address>
� EMAIL ALTNEWSSERVER = <server address>, …
� EMAIL HOSTCCS = <ccs mnemonic>
� EMAIL SERVERCCS = <ccs mnemonic>
� *COMPANY, *DEPARTMENT, *BUILDING (NNTP only)
� EMAIL: <send option>

The *INSTALLATION/OPTIONS file supplies global configuration parameters to OBJECT/EMAIL. It
must have a filekind of SEQDATAand be stored on the same disk family as the OBJECT/EMAIL codefile.

The configuration data consists of name/value pairs, one per record in the file. A configuration entry can be
continued across records by placing a "%" as the last non-blank character on each line of the entry except the
last. The entries in this file used by OBJECT/EMAIL are:

• EMAIL MAILSERVER – specifies the primary SMTP server (MTA) to which the utility will send the
email messages it composes. This entry is required. It may specify an IP address or domain name.

• EMAIL ALTMAILSERVER – specifies a list of SMTP servers to be used as alternate MTAs if the
primary one is not available.

• EMAIL NEWSSERVER – specifies the primary NNTP news server to which the utility will send news
group postings.

• EMAIL ALTNEWSSERVER – specifies a list of alternate news servers to be used if the primary one is
not available.

• EMAIL HOSTCCS – overrides the default internal character set (the character set used by MCP
applications).

• EMAIL SERVERCCS – overrides the default character set for outgoing messages (those send to the
MTA).

• *COMPANY, *DEPARTMENT, *BUILDING – specify descriptive strings to be included in outgoing
message headers. These apply to NNTP news group postings only.

• EMAIL: <send option> – specifies default message sending options. Sending options will be discussed
later in the section on the program's parameter string syntax. Note the use of a colon (:) instead of an
equal sign (=) in this entry.

Using MCP EMAIL

2009 UNITE MCP-4005 22

MCP-4005 22

Sample *INSTALLATION/OPTIONSSample *INSTALLATION/OPTIONS
EMAIL MAILSERVER=mail.galactic.biz

EMAIL ALTMAILSERVER=209.217.90.25, mail.bkup.net:2555,%

(mailv6.galactic.biz, MYIPADDRESS=::FFFF:192.168.16.2)

*COMPANY=Galatic Enterprises LLP

*DEPARTMENT=Domestic IT

*BUILDING=Undisclosed Location

EMAIL: RRR ON

EMAIL: BCCSELF OFF

EMAIL: FROM=TheUnisys@galactic.biz

Entry continuation

This example shows a somewhat contrived global configuration file. The only required entry is the one for
MAILSERVER. Note the use of a percent sign (%) to indicate continuation of an entry across records of the
file.

A server address can be specified as an IP address or a domain name. It can be optionally followed by a colon
and a number to indicate the MTA server is listening on a port other than the default SMTP port 25. By
enclosing a server address in parentheses, you can include additional attributes for the connection. At present
the only additional attribute supported is MYIPADDRESS, which specifies the network interface on the MCP
system through which connections to the MTA will be made. The example above shows an IPv6 address
being used with the MYIPADDRESSattribute.

Also note the EMAIL: entries specifying global sending options. These options will be applied by default to
all messages send by OBJECT/EMAIL unless they are explicitly overridden by user-level configuration or
send options in an individual message. As mentioned earlier, these options will be discussed later in the
section on parameter syntax.

Using MCP EMAIL

2009 UNITE MCP-4005 23

MCP-4005 23

Per-User EMAIL ConfigurationPer-User EMAIL Configuration

� EMAIL attribute in USERDATA
� +USER PAUL ...

... EMAIL="paul.kimpel@digm.com" ...;

� CANDE/MYOPTIONSfile
� SEQDATAfilekind
� Stored under usercode on default disk family

� MYOPTIONSUPPORT
� Entry points in GENERALSUPPORTlibrary
� Originally, INSTALLATION/OPTIONS and

CANDE/MYOPTIONSwere implemented for EMAIL

� Now a general-purpose mechanism for specifying
global and per-user options and parameters

Having dealt with global configuration for OBJECT/EMAIL, we now turn to the configuration for individual
users. Since the utility runs within the MCP environment, a "user" is identified by an MCP usercode.

At a minimum, each user must be associated with an email address. This is used to annotate outbound
messages with a From: header. There are two ways to make this association:

• By establishing the EMAIL attribute in the user's USERDATArecord. This is the only bit of email
configuration data that is stored in a standard USERDATAFILE.

• As a *EMAIL entry in the user's optional CANDE/MYOPTIONSfile. Like the CANDE/STARTUPfile,
this file (if it exists) must reside under the user's usercode on their default disk family. OBJECT/EMAIL
automatically looks for and processes the entries in CANDE/MYOPTIONSwhenever it sends a message
for a user.

There are a number of other entries that can be established in the CANDE/MYOPTIONSfile for email and
other uses. We will discuss the email and news options over the next several slides.

This file was initially introduced to provide per-user configuration options for OBJECT/EMAIL, but a few
releases ago was made more general purpose through a series of entry points in the GENERALSUPPORT
library collectively referred to as MYOPTIONSUPPORT. You can use this facility to add your own
configuration items to CANDE/MYOPTIONSand retrieve the data without having to parse the file yourself by
calling the MYOPTIONSUPPORTentry points. The key EMAIL is reserved for use by the MCP, but you can
create entries that use other keys. The capabilities and use of MYOPTIONSUPPORTare discussed in the
section on GENERALSUPPORTin Appendix A of the System Software Utilities Operations Reference
Manual.

Using MCP EMAIL

2009 UNITE MCP-4005 24

MCP-4005 24

CANDE/MYOPTIONS Entries for EMAILCANDE/MYOPTIONS Entries for EMAIL

� Basic entries
� *NAME = <text>
� *EMAIL = <default FROM email address>
� *COMPANY, *DEPARTMENT, *BUILDING (as for global)

� Default <send options> for user, e.g.,
� EMAIL: WRAP OFF, RRR ON
� EMAIL MAIL: BCCSELF OFF
� EMAIL NEWS: BCCSELF ON

� Address aliases (distribution lists)
� EMAIL HELPDESK=mary, paul.kimpel@digm.com
� EMAIL SWDEV=tom, dick@rick.net, harriet
� EMAIL ITTEAM=#SWDEV, #HELPDESK, poobah

The two basic entries you should put in your CANDE/MYOPTIONSfile are

• *NAME = <some text intended to be your display name>

• *EMAIL = <your default From: email address>

You can also include *COMPANY, *DEPARTMENT, and *BUILDING entries for NNTP news submissions as
discussed with the global options.

A second class of entries you can make represent default sending options for your messages. These options
will override any specified in the global configuration file, and in turn may be overridden by options specified
in the parameter string to OBJECT/EMAIL. As shown on the slide, you simply write the key EMAIL
followed by a colon (:) and then include the options in a comma-delimited list. You can have multiple entries
for the same key.

You can qualify entries so that they will apply either to email messages or NNTP news group submissions by
following the EMAIL keyword with either MAIL or NEWS. The options specified on this type of entry will
apply only to that type of message in OBJECT/EMAIL.

A third class of entries you can make in CANDE/MYOPTIONSare address aliases, also termed distribution
lists. To define an alias, enter the EMAIL keyword followed by the name you wish to assign to the alias and
then an equal sign (=). After that, enter a comma-delimited list of email references. We will discuss these
email references in detail when discussing parameter syntax, but in brief, these references can be an email
address in the standard name@host.domain form, an MCP usercode, or another alias name prefixed by a
crosshatch (#). Thus, aliases can be defined recursively, with one alias including the email addresses defined
by another alias. There are some other options for defining these email reference lists, which will be discussed
shortly.

Using MCP EMAIL

2009 UNITE MCP-4005 25

MCP-4005 25

Sample CANDE/MYOPTIONSSample CANDE/MYOPTIONS
*NAME=Paul Kimpel

*EMAIL=Paul Kimpel <paul.kimpel@digm.com>

*COMPANY=Paradigm Corporation

*DEPARTMENT=The Only One

EMAIL: WRAP ON, SEQ OFF

EMAIL MAIL: WRAP OFF, SEQ ON

EMAIL CUSTONE=poobah@galatic.biz, mary@galatic.biz, %

fred@galatic.biz, tom@galactic.biz, %

"Dick the Consultant" <dick@rick.net>

EMAIL SELF=paul.kimpel@digm.com

Entry continuation

This slide shows a sample CANDE/MYOPTIONSfile. It includes

• Some identifying entries for the user.

• A couple of default send options, one that applies to all messages, and one that only applies to email
messages.

• Two alias definitions, CUSTONEand SELF. Note that, as with the global configuration file, entries can
be continued across multiple records using a "%" at the end of all but the last record for an entry.

Using MCP EMAIL

2009 UNITE MCP-4005 26

MCP-4005 26

Running OBJECT/EMAILRunning OBJECT/EMAIL

� Two modes:
� Run as a program (CANDE, MARC, WFL, etc.)
� Call entry points in the EMAILSUPPORTlibrary

� Running EMAIL as a program
� Single string parameter
� Some options can be specified in line or by file equation
� Returns error result in TASKVALUEattribute:

– Bit [0:1] 0=success/warning, 1=error
– Bits [7:7] error or warning code, 0=success

� On error, TASKFILE contains a printer-backup trace of
interactions with the MTA

That concludes the discussion on configuring OBJECT/EMAIL. The next topic concerns running the
program. As mentioned earlier, OBJECT/EMAIL has two modes – it can be run as a standard program (task)
or it can be called as a library with a function name of EMAILSUPPORT. We will first discuss running the
utility as a program.

When run as a program, OBJECT/EMAIL requires a single string parameter. All options for the program can
be specified through the parameter string. Some options can be activated by equating files to certain
INTNAMEs. The parameter syntax and file equation options will be discussed over the next several slides.

OBJECT/EMAIL returns a result code in its TASKVALUEattribute. This result word consists of two bit
fields:

• Bit [0:1] indicates whether there was an error. A value of zero indicates the run was successful or
generated a warning. A value of one indicates there was an error that prevented the message from being
sent. Note that an indication of success or error concerns the program's ability to contact and deliver the
message to the MTA, not to the ultimate addressees. Delivery to the addressees is the MTA's job.

• Bits [7:7] indicate an error code. If this code is zero (and bit 0 is zero), the run completed successfully. If
bit 0 is zero and this field is non-zero, the field indicates a warning code. If bit 0 is a one, this field
indicates an error code. The codes are defined in the documentation.

In addition to this result word, OBJECT/EMAIL writes to its TASKFILE a printed trace of the network
interactions it has with its MTA. After a successful send, this file is purged (unless the TRACEoption is set).
If there is an error, you can use this trace data to help understand what went wrong.

Using MCP EMAIL

2009 UNITE MCP-4005 27

MCP-4005 27

EMAIL Parameter SyntaxEMAIL Parameter Syntax

� Sending email messages:
SEND[: <option list>] <email list>// <subject>// <body>

� Submitting newsgroup (NNTP) messages:
SUBMIT[: <option list>] <news list>// <subject>// <body>

� Notes:
� <option list> and its ": " prefix are optional
� <subject> text cannot contain "// "
� <body> text can contain "// " or "^ " to indicate a newline
� Will not discuss NNTP feature

– SUBMITand <news list>
– Works similar to SENDand <email list>

The basic command syntax for OBJECT/EMAIL came almost directly from the old A Series Mail product.
The parameter string for the program has five main parts:

• A command keyword of SENDor SUBMIT.
– SENDindicates you are sending an email message.
– SUBMIT indicates you are submitting a news group posting.

• An optional list of sending options. The options must be preceded by a colon (:). The options are
written in a comma-delimited list. Spaces may be present around the commas and between tokens in the
option syntax.

• A list of email addresses, or email references that eventually resolve to email addresses. For the SUBMIT
command, this list takes a slightly different form, as submissions are made to news groups rather than
email addresses.

• The subject line of the message, preceded by a double-slash (//). The text of this line may not contain a
double-slash, as that is what delimits it from the next part.

• The body of the message, again preceded by a double-slash (//). This part (and its preceding double-
slash) can be omitted if desired. The body can be obtained from a file, as will be discussed shortly. The
body text cancontain double-slashes. If present these are translated into carriage-return/line-feed
sequences in the outgoing message. A caret (^) in the body text will have the same effect.

We will not delve into news groups and the SUBMITcommand further in this presentation. Except for a
difference in the way that messages are addressed, it works similarly to the SENDcommand.

Using MCP EMAIL

2009 UNITE MCP-4005 28

MCP-4005 28

EMAIL Address ListsEMAIL Address Lists

� <email list>:
<to list> [& <cc list> [& <bcc list> [& <reply-to list>]]]

� Each list is a comma-delimited list of entries

� Each list entry is one of:
� * (send to self)
� <email address>
� <MCP usercode>
� <MCP usercode>@<BNA hostname>
� %<file title> (list of addresses in CANDE file)
� # <address alias> (as defined in MYOPTIONS)

� File and alias lists can be recursive

Probably the most important part of the parameter syntax is that which routes the message to recipient
addresses. The list of addresses is actually four lists, separated by ampersands (&).

• The first list is for To: addresses.

• The second list is for CC: addresses.

• The third list is for BCC: (blind copy) addresses.

• The fourth list is for Reply-to: addresses. This defines the default list of addresses to which a reply to
the message will be sent by a recipient.

All lists are optional (i.e., they may be empty), but the ampersands are necessary to delimit one list from
another. The ampersands for any trailing empty lists may be omitted. Thus, a message with only To: and CC:
addresses would only require one ampersand, the one separating those two lists.

Each of these four lists is composed of comma-delimited email reference entries.

Each reference entry in the list can be one of the following:
• An asterisk (*). This implies the message will be sent to the sending user (provided an email address is

configured in their USERDATArecord).

• A standard email address, which can have one of these forms (the "<" and ">" are literal in this case):
– name@host. domain
– Display Name <name@host. domain>
– " Display Name" < name@host. domain>

• An MCP usercode. The message will be sent to the email address configured in that user's USERDATA
record.

• An MCP usercode at a BNA hostname. The message will be sent to the email address configured for the
specified user at the specified BNA host.

• A percent sign (%) followed by an MCP file title. This is a form of distribution list. The file contains a
list of email addresses. Multiple addresses in one record must be separated by commas. The file can be
of any CANDE-editable filekind.

• A crosshatch (#) followed by an alias name, which is another form of distribution list. The alias must
have been defined previously in the user's CANDE/MYOPTIONSfile or the global
*INSTALLATION/OPTIONS file.

Note that the %<file title> and #<alias> distribution lists are fully recursive. Files may reference other files
and aliases. Aliases may reference files and other aliases.

Using MCP EMAIL

2009 UNITE MCP-4005 29

MCP-4005 29

EMAIL SEND ExampleEMAIL SEND Example
TASK ET;

RUN OBJECT/EMAIL (
"SEND:RRR ON, WRAP ON, LOGIN=USAH/PWORD, " &

"ATTACH (YOUR)OBJECT/DEMO AS DEMO.CON " &
"tom@galactic.biz, harriet@galactic.biz " &
"& #helpdesk, %(PROD)LIST/SECURITY/ADDR ON LIB " &
"& ""Richard Rick"" <dick@rick.net> " &
"& #self" &
"//Beta 1.17 version of demo program" &
"//Attached is a wrap file containing our latest " &

"version of the demo program.//Please run " &
"this against the test suite and let us know " &
"the results.^Thanks.") [ET];

FILE SIGNATURE = MY/SIGNATURE ON DEV;

IF ET(TASKVALUE) MOD 2 = 1 THEN
ABORT "EMAIL SEND FAILED";

This slide shows the parts of a fairly full parameter list.
• The SENDcommand indicates we are sending an email message rather than a news group submission.

• The colon (:) following SENDintroduces an option list, which continues for two lines, until a comma
delimiter is no longer encountered.

• The next line is the To: list with two email address entries.
• The next line (beginning with &) is the CC: list, also with two entries, an alias and a file distribution list.

• The next line (beginning with the second &) is the BCC: list, which has one email address.

• The next line (beginning with the third &) is the Reply-To: list, containing a single alias entry.

• The next line (beginning with //) is the subject line for the message.

• The remainder of the parameter (beginning with the second //) is the body of the message. Note that it
contains another // and a ̂ to indicate embedded newlines.

• The file equation on the SIGNATURE INTNAMEcopies the contents of the specified file at the end of
the body as a signature block.

The WFL IF statement at the end isolates bit [0:1] of the TASKVALUEresult and checks it for an error
condition.

Using MCP EMAIL

2009 UNITE MCP-4005 30

MCP-4005 30

EMAIL File Equation INTNAMEsEMAIL File Equation INTNAMEs

� Alternative to specifying values in param
� Appends data to values from the parameter string

� Attribute-only file equations (no data file)
� SMTP(YOURDOMAINNAME, NOTE)
� NNTP(YOURDOMAINNAME, NOTE)
� ORGANIZATION(NOTEonly)

� Address lists (appends to parameter lists)
� TO, CC, BCC, REPLY-TO

� Use CANDE-editable file formats

� Message text (appends to parameter text)
� BODY, SIGNATURE, XHEADERS

OBJECT/EMAIL has a number of files that can be equated at run time to supply additional data for use in
composing a message. All of these files can be specified in the parameter string syntax, but file equation is
often more convenient, especially when running the utility program from WFL jobs.

There are three INTNAMESwhich can be file-equated simply to supply parameters to the program. These
internal files are never used to open a physical file.

• SMTPuses the YOURDOMAINNAMEand NOTEattributes. YOURDOMAINNAMEoverrides the primary
email server address in the global configuration file. NOTEoverrides the list of alternate email servers.

• NNTPuses YOURDOMAINNAMEand NOTEin the same fashion, but these attributes provide overrides
for the primary and alternate news servers.

• ORGANIZATIONuses only the NOTEattribute to supply an override *ORGANIZATIONstring for news
group submissions.

OBJECT/EMAIL also supports file equation for each of the four mail address lists. These files have the same
format as the %<file title> distribution lists, and can be prepared using any CANDE-editable filekind:

• TO

• CC

• BCC

• REPLY-TO

Finally, there are three files that can supply additional text used in composing the message:
• BODYsupplies text for the body of the message. If the parameter string includes body text (after the

second //), the contents of this file are simply appended to any body text contained in the parameter
string.

• SIGNATUREsupplies a signature block for the message. The text of this file is appended to the end of
any body text.

• XHEADERSsupplies additional "user" headers for the message. The records from this file are appended
to the end of the message heading. This file is for advanced situations and is seldom used.

Using MCP EMAIL

2009 UNITE MCP-4005 31

MCP-4005 31

EMAIL Send OptionsEMAIL Send Options

� FROM = * | <email addr> | #<alias>
� Sets the From: header in message (* =sender)
� Defaults to EMAIL in UDF or *EMAIL in MYOPTIONS

� LOGIN = <user name>/<password>
� Supplies credentials to the MTA for sending
� UC and PW can be quoted with ' or "

� RECYCLE = <integer>
� Number of times to retry a failed send
� Default = 1 (on MCP 12.0)

� RETRYQUEUE = <integer>
� Job queue to be used for retries

I have mentioned sending options several times thus far, and we have finally arrived at the point where we
can talk about them in detail. These options can appear as defaults in the global and user configuration files.
They can also be included in the parameter string as a comma-delimited list, preceded by a colon, following
the SENDor SUBMITcommand. There are almost 20 of these options, which I'll discuss over the next several
slides.

• FROMprovides an email address for the sender. This option overrides any default address in the user's
USERDATArecord or *EMAIL entry in CANDE/MYOPTIONS. It can be specified as

– An asterisk (* , meaning use the email address in the user's USERDATArecord).
– A standard email address
– A #alias name.

• LOGINprovides user name and password credentials to access the email server (MTA) for sending
messages. A default can be specified in the global or user configuration file. At present, there is no way
to secure the password.

• RECYCLEindicates the number of times to retry a failed attempt to send a message. The default on MCP
12.0 is once. The retry mechanism used by OBJECT/EMAIL will be discussed a little later in the
presentation.

• RETRYQUEUEindicates the WFL queue to be used for retry attempts.

Using MCP EMAIL

2009 UNITE MCP-4005 32

MCP-4005 32

EMAIL SEND Options, continuedEMAIL SEND Options, continued

� RRR [ON | OFF]
� Return Receipt Requested

� BCCSELF [ON | OFF]
� Send blind copy of message to sender (me)
� Useful for archiving emails sent from MCP

� RTF, RICHTEXT, RTEXT [ON | OFF]
� Sets header Content-Type: text/enriched
� Body formatted as "rich text" – it's not Microsoft RTF
� Uses simplified HTML-like tags for markup
� See RFC 1896 for details

� MIME [ON | OFF]
� Formats message with MIME headers, implied by RTF

and ATTACHoptions

Continuing the discussion of sending options…
• RRRplaces a header in the message that requests the receiving MDA or MUA to send a return receipt

notice. Note that you can only request the receiver to send this notice. Some users configure their email
clients not to return receipts.

• BCCSELFinstructs OBJECT/EMAIL to add the sender's email address to the message's BCC: list.
Since OBJECT/EMAIL does not maintain message folders, it does not retain any record of having sent a
message. This option allows you to send a copy to your standard mailbox, from which presumably you
will archive it.

• RTF, RICHTEXT, and RTEXTare all synonyms for an option that will cause the message to be sent as
"rich text." Note that this is not the same as Microsoft's RTF for Office documents. This form is a
simplified HTML-like markup notation that is defined in RFC 1896. You must compose the message
using the markup yourself. All that this option does is indicate the receiver is to interpret the body
according to RFC 1896 by including a Content-Type: header of "text/enriched " in the
message.

• MIMEindicates that the message is to be formatted with MIME (Multi-purpose Internet Message
Extensions) headers. This option is set automatically when you specify the RTFor ATTACHoptions.

– With MIME disabled, no Content-Type: header will be inserted into the message by
OBJECT/EMAIL, and most email clients will interpret the body of the message as plain text

– With MIME enabled, the program will examine the type of data in the body (particularly its file
name extension) and insert an appropriate Content-Type: header in the message. OBJECT/EMAIL
understands some common extensions, such as .TXT , .CSV, .RTF (for RFC 1896 enriched text),
.HTM, .HTML, and the symbol file extensions used with Client Access Services.

Using MCP EMAIL

2009 UNITE MCP-4005 33

MCP-4005 33

EMAIL SEND Options, continuedEMAIL SEND Options, continued

� SEQUENCE [ON | OFF]
� Include sequence field of CANDE files in body text

� MARKID [ON | OFF]
� Include patchmark field of CANDE files in body text

� TEST [ON | OFF]
� Redirects message to sender (my user) only

� TRACE [ON | OFF]
� Writes detailed trace data to TASKFILE

� EXPIRES = <integer>
� Expiration time [days] for a news (NNTP) submission

Continuing the discussion of sending options…
• SEQUENCEindicates, when equating a file for the body with CANDE-style sequence numbers, whether

the sequence numbers are to be included in the message.
• MARKIDsimilarly indicates whether the mark field of a file used for the body should include the

patchmark data.
• TEST is useful for testing message composition. It ignores the address lists and sends the message only

to the sending user's email address.
• TRACEcauses the detailed trace of message traffic between OBJECT/EMAIL and the MTA to be saved

when the program terminated. This trace is always created and written to the program's TASKFILE, but
by default it is purged upon a successful send or on any retry attempts after an unsuccessful send.

• EXPIRES indicates the number of days a message is to be retained by the news group server. It is used
only with NNTP and the SUBMITcommand.

Using MCP EMAIL

2009 UNITE MCP-4005 34

MCP-4005 34

EMAIL SEND Options for File DataEMAIL SEND Options for File Data

� BODY = <file title>
� Appends contents of file to parameter body text
� Alternative to file-equating BODY

� Can be a printer-backup file

� ATTACH = <file title> [AS <name>]
� Attaches the file to the message
� Can be a printer-backup file
� Multiple ATTACHoptions allowed

� ATTACH = "[" <wrap list> "] " [AS <name>]
� Wraps the list of file titles and attaches the resulting

container file

Continuing the discussion of sending options…
• BODYspecifies a file that will be appended to the body text of the message. This option is an alternative

to file-equating the BODY INTNAME. It is typically used when calling OBJECT/EMAIL library entry
points, since file equation cannot be applied in that case. Note that OBJECT/EMAIL understands the
format of an MCP printer-backup file, and will translate such a file to standard text format.

• ATTACHspecifies a file to be attached to the message. The file can be given a different name in the
attachment using the AS clause. The format of the attachment varies depending on the WRAPoption,
discussed on the next slide. You can attach a printer-backup file and have it converted to standard text
format as for BODY. Unlike the BODYoption, however, you can have multiple ATTACHoptions in the
option list; each one will attach its file to the message.

• A second form of ATTACHoption will wrap one or more MCP files and attach the resulting container
file to the message. This is indicated by enclosing the file name or list of names in square brackets ("["
and "] "), and is useful if you want to send non-text MCP files, or send the file in such a way that all of
its internal formatting and file attributes will be preserved when it is unwrapped back into the MCP
environment. This form of attachment is unaffected by the WRAPoption – it always wraps the files
before attaching them.

Using MCP EMAIL

2009 UNITE MCP-4005 35

MCP-4005 35

EMAIL SEND Options, continuedEMAIL SEND Options, continued

� WRAP [ON | OFF | *]
� Causes individual files to be wrapped before attaching
� "* " causes only non-symbol files to be wrapped

� SIGNATURE = "<text>" | <file title> | OFF
� Appends the <text> or file to the end of the body
� Alternative to file-equating SIGNATURE
� Overrides any default signature in MYOPTIONS
� OFFsuppresses any default signature in MYOPTIONS

� XHEADERS = <file title>
� Appends a file of X-headers to the message header
� Alternative to file-equating XHEADERS

� Advanced stuff – not commonly used

Completing the discussion of sending options…
• WRAPindicates whether single-file attachments (those specified without enclosing square brackets) are

to be attached as-is, or wrapped first and the wrapped result attached:
– ON(or just specifying WRAPby itself) indicates all attachments are to be wrapped.
– OFFindicates no attachments are to be wrapped.
– * indicates that only non-symbol files are to be wrapped. Symbol files will be attached as plain text.

• SIGNATUREcan be specified as an alternative to file-equating the SIGNATURE INTNAME, but has a
couple of additional options.

– Specifying a file name causes the contents of that file to be appended to the body as a signature
block, as for the file-equation alternative.

– Specifying a string of text causes that string to be appended to the body as the signature block
– Specifying OFF indicates that no signature block is to be appended. This can be used to inhibit a

default signature specified in the global or user configuration file.
• XHEADERScan be specified as an alternative to file-equating the XHEADERS INTNAME. The specified

file supplies a list of additional headers that are appended to the heading portion of the email message.

Using MCP EMAIL

2009 UNITE MCP-4005 36

MCP-4005 36

Another Example Using CANDEAnother Example Using CANDE
u email send :

from=spammer@flack.com,
login=fred/'Mertz',
bcc,
sig off,
recycle=5,
retryqueue=7,
body=*bd/0001234/0002345/000000000000/line,
attach=[my/data/1, my/data/2, my/data/3] as dat.con

bill@will.net & manuel@automatic.org, obi@wan.com
//Results of beta test 2
//Report follows, see attachments for the output files.

This slide shows a sample execution of the program from CANDE that illustrates a number of the sending
options. This example has been reformatted to highlight the individual options. Note the colon (:) following
the SENDcommand. Also note that the keywords are case-insensitive in the parameter string syntax:

• FROMsupplies a sender address that overrides any default that has been configured in USERDATAor the
CANDE/MYOPTIONSfile.

• LOGINsupplies credentials for the MTA server. Note that special characters and case sensitivity can be
preserved by enclosing the password in single quotes (').

• BCCindicates the program should add the sender's email address to the BCC: list. This is an abbreviation
for BCCSELF. For the on/off options, ONis implied if neither value is specified.

• SIG OFF indicates no signature block is to be composed, even if a default signature has been specified
in one of the configuration files.

• RECYCLEindicates that OBJECT/EMAIL is to retry sending the message up to five times.

• RETRYQUEUEindicates that any retry attempts are to be run from WFL queue 7.

• BODYspecifies a file to be appended to the body text specified at the end of the parameter string.
Presumably this is an MCP printer-backup file, so it will be translated to standard text format.

• ATTACHspecifies that the three files in the bracketed list are to be wrapped into a container and that
container file attached to the message with a name of "dat.con ".

Since the final ATTACHoption is not followed by a comma, it terminates the list of options, and the next
token in the parameter string is the start of the To: list of email addresses.

Using MCP EMAIL

2009 UNITE MCP-4005 37

MCP-4005 37

Using the EMAIL APIUsing the EMAIL API

� OBJECT/EMAIL is two things in one
� A program you run with a string parameter
� A library with callable entry points
� SL function name is EMAILSUPPORT

� Supports three caller environments
� Algol

RESULT:= EMAIL (<pointer expression>);

� COBOL
CALL "EMAIL_COB in EMAILSUPPORT"
USING W-MSG, W-LENGTH GIVING W-RESULT.

� LINC / EAE / ABS
CALL; (EMAIL_LINC) (EMAILSUPPORT)

Thus far, we have been discussing the use of OBJECT/EMAIL as a utility program you run from WFL,
CANDE, or MARC. You run the program, pass it a string parameter, possibly apply some file equation, and it
generates the message and sends it to the specified MTA.

OBJECT/EMAIL also functions as a library, and all of the things you can do with it as a running program
(except the file equation) can be done by calling one of the library entry points. Simple Install defines the
OBJECT/EMAIL codefile as a system library (SL) with the function name EMAILSUPPORT.

When used as a library, the program has three entry points, each designed for a different language
environment.

• EMAIL is designed for Algol. It takes a single pointer expression as a parameter. The pointer expression
references a parameter string (in the same format as discussed previously). The program expects the
string to be terminated with a NUL(hex 00) character. The entry point returns an integer value in the
same format at the TASKVALUEresult, with an error flag in bit [0:1] and an error code in bits [7:7].

• EMAIL_COBis designed for COBOL. It takes two parameters, the name of an 01-level record area, and
an integer data item of USAGE BINARY. The record area contains the parameter string and the integer
item indicates the length of the string. The result value (which must also be an integer with USAGE
BINARY) is the same as the TASKVALUEresult.

• EMAIL_LINC is designed for the LINC/EAE/ABS environment. The message is inGLB.PARAM. The
result code is returned in the first three characters of GLB.PARAMand any warning code in the second
three characters.

The documentation contains examples for each of these entry points.

Using MCP EMAIL

2009 UNITE MCP-4005 38

MCP-4005 38

EMAIL API ParametersEMAIL API Parameters

� String parameter
� Has same format as for running EMAIL as a program
� No file equation possible
� Use BODY, ATTACH, etc. options instead

� Result value
� Same format as for TASKVALUEresult
� Bits [0:1] = warning/error, [7:7] = error code
� Codes are defined in the documentation
� Result = 0 implies message accepted by MTA

All of the OBJECT/EMAIL library entry points take a string parameter that has the same format as the one
used when running the codefile as a program. Since no file equation is possible with library calls, you must
use the <option list> equivalents, BODY=, ATTACH=, SIGNATURE=, etc.

All of the entry points return a result value. For COBOL and Algol, this result is an integer with the same bit-
field format as the TASKVALUEresult discussed earlier for the program. The error/warning codes are defined
in the Unisys documentation.

Note that a successful result of zero implies only that the message was accepted for delivery by the MTA. As
with all email, actual delivery to the recipient may take place a significant amount of time later. There is no
way within the MCP environment to know that a message did or did not reach the intended destination. Since
OBJECT/EMAIL is a send-only MUA, the From: or Reply-To: address in the message should refer to a
"real" mailbox where return receipts and bounce notices can by sent by the MTA.

Using MCP EMAIL

2009 UNITE MCP-4005 39

MCP-4005 39

Algol EMAIL API ExampleAlgol EMAIL API Example
Library EmailSupport (libaccess=byfunction);
Real Procedure email(p);

value p; pointer p;
library EmailSupport;

Real result;
Ebcdic Array msg[0:1023];

Replace msg[0] by "send:bcc,rrr you@your.com",
//This is a test//Sent from the Algol EMAIL API.",
0 for 1;

result:= email(msg[0]);

If Boolean(result.[0:1]) then
... % report error

This slide shows a simple example of the Algol EMAIL entry point. Note that the parameter string must be
terminated by a NUL(hex 00) character.

Using MCP EMAIL

2009 UNITE MCP-4005 40

MCP-4005 40

COBOL EMAIL API ExampleCOBOL EMAIL API Example
77 W-RESULT USAGE REAL.
77 W-LENGTH PIC S9(11) BINARY EXTENDED.
01 W-MSG PIC X(1023).

CHANGE ATTRIBUTE LIBACCESS OF "EMAILSUPPORT" TO
BYFUNCTION

MOVE 1 TO W-LENGTH
STRING "SEND:BCC,RRR YOU@YOUR.COM ",

"//This is a test",
"//Sent from the COBOL EMAIL API."
DELIMITED BY SIZE INTO W-MSG POINTER W-LENGTH

SUBTRACT 1 FROM W-LENGTH
CALL "EMAIL_COB IN EMAILSUPPORT" USING

W-MSG, W-LENGTH
GIVING W-RESULT

IF W-RESULT NOT = ZERO
... *> REPORT ERROR

This slide shows a simple example of the EMAIL_COBentry point for COBOL. The first parameter contains
the parameter text and the second parameter contains its length.

Using MCP EMAIL

2009 UNITE MCP-4005 41

MCP-4005 41

EMAIL Retry MechanismEMAIL Retry Mechanism

� Send doesn't always work the first time
� Usually due to problems contacting the MTA
� Success is defined as message acceptance by MTA,

not delivery to recipients

� On a transient send error
� Trace of original attempt is written to TASKFILE

� EMAIL creates and starts a WFL retry job
� Name is EMAIL/RETRY/ n where n=retry count
� Failed retry starts another job, up to max retry count
� Retries are scheduled after 2, 5, 10, 30 minutes
� Retries thereafter are every hour
� No TASKFILE is saved for retries unless :TRACE ON

Because email usually involves exchanging data across a network, messaging does not always work the first
time, and sometimes does not work at all. OBJECT/EMAIL has a basic retry mechanism it uses when it is
unable to successfully send a message to its MTA.

Note once again that success in terms of OBJECT/EMAIL is having the message accepted by its MTA, i.e.,
the primary email server or one of the alternates specified in the global configuration file. Once that first
MTA accepts the message, OBJECT/EMAIL is done with its job. Delivery to the recipients is the MTA's job.

Therefore, the kinds of problems that typically invoke the OBJECT/EMAIL retry mechanism are those that
involve contacting the MTA. Common types of problems are that the program cannot connect to the MTA,
the connection is interrupted, authentication of credentials is not successful, or that there is a mismatch
between the SMTP options supported by the two ends of the connection.

As mentioned earlier, OBJECT/EMAIL writes a printer trace of the message traffic between it and its MTA
to its TASKFILE. The file is by default purged after a successful send, but is retained by default after the first
unsuccessful transmission. This trace can prove very useful in determining what went wrong.

When a send to the MTA is unsuccessful, OBJECT/EMAIL constructs a WFL job to run the program again
using the same parameter string and file equations as for the initial attempt. The name of this job will be
EMAIL/RETRY/ n, where n is the retry count (1, 2, 3, …). The program starts this job with a STARTTIMEto
schedule the retry after a delay. The first four retries are scheduled for 2, 5, 10, and 30 minutes after their
predecessor attempt, respectively. Subsequent retries are scheduled every hour. No TASKFILE trace is
retained for these retries unless you had explicitly set the TRACEsending option in the original parameter
string.

The number of retry attempts is determined by the RECYCLEsending option. The RETRYQUEUEoption
specifies which work flow job queue the retry jobs will be inserted into. The retry mechanism changed
somewhat in MCP 12.0. The default (when RECYCLEis not specified) is now that OBJECT/EMAIL will
retry sending the message once within the original run of the program, and then give up. If you specify
RECYCLE>0, the program will start jobs under the schedule described above until the retry count is exhausted
or the send attempt succeeds.

Using MCP EMAIL

2009 UNITE MCP-4005 42

MCP-4005 42

Sample EMAIL TASKFILE TraceSample EMAIL TASKFILE Trace
4065 *OBJECT/EMAIL 51.189.8006
CCSVERSION=0 INTERNAL_CCS=4 EXTERNAL_CCS=5
INPUT LEN=92 ==>SEND:TRACE PAUL.KIMPEL@DIGM.COM //TRACE EXAMPLE//THIS

MESSAGE GENERATES AN EMAIL TRACE REPORT<==
093021 OPEN MAIL IPADDRESS=192.168.166.29 "192.168 .166.29" (25): 1

READ LEN=39 ==>220 s1.digm.com ESMTP Postfix (2.5.6)02<==
093021 34500000 D5

FINAL LEN=23 ==>EHLO [192.168.166.29] |~ <==
READ LEN=120 ==>250-s1.digm.com |~ 250-PIPELINING |~ 250-SIZE 20971520 |~

250-VRFY|~ 250-ETRN|~ 250-ENHANCEDSTATUSCODES|~ 250-8BITMIME |~ 250 DSN |~ <==
FINAL LEN=45 ==>MAIL FROM: <ADMINISTRATOR@MCPVM MA.DIGM.COM>|~ <==
READ LEN=14 ==>250 2.1.0 Ok |~ <==
FINAL LEN=31 ==>RCPT TO: PAUL.KIMPEL@DIGM.COM |~ <==
READ LEN=14 ==>250 2.1.5 Ok |~ <==
FINAL LEN=7 ==>DATA |~ <==
READ LEN=37 ==>354 End data with <CR><LF>.<CR> <LF>|~ <==
FINAL LEN=56 ==>X-MAILER: UNISYS MCP/AS EMAIL (51.189.8006) 06/27/2005 |~ <==
FINAL LEN=39 ==>DATE: SUN, 27 SEP 2009 09:30:21 -0700 |~ <==
FINAL LEN=40 ==>FROM: <ADMINISTRATOR@MCPVMMA.DI GM.COM>|~ <==
FINAL LEN=24 ==>SUBJECT: TRACE EXAMPLE |~ <==
FINAL LEN=26 ==>TO: PAUL.KIMPEL@DIGM.COM |~ <==
FINAL LEN=48 ==> |~ THIS MESSAGE GENERATES AN EMAIL TRACE REPORT|~ <==
FINAL LEN=3 ==>. |~ <==
READ LEN=37 ==>250 2.0.0 Ok: queued as 6F8E4C3 853D|~ <==
FINAL LEN=6 ==>QUIT |~ <==
READ LEN=15 ==>221 2.0.0 Bye |~ <==

CR-LF → "|~ "Time (hhmmss) & EMAIL linenumber

This slide shows a sample TASKFILE trace from an OBJECT/EMAIL run. The first few lines show the
program version, CCS settings, repeat the parameter string, and indicate which MTA was contacted. In this
example, the MTA is a Fedora Linux system running Postfix.

Following that is a trace of the message traffic (if any) between the program and the MTA. Each message is
shown on two or more lines, surrounded by blank lines. The message text is shown in CANDE "hexplicit"
format, where non-graphic characters are displayed in hex, with the first hex digit of the on the line with the
printable characters and the second hex digit on the line below.

The following shows an example of one message. The first token indicates the type of operation. READ
indicates data received from the MTA, FINAL indicates the final (or only) block of data sent to the MTA by
the program. LEN= indicates the message length in characters. The text of the message is shown between the
"==>" and "<==" arrows. On the second line, the first token is the time of day in hours/minutes/seconds. The
second token is the line number within OBJECT/EMAIL where the operation took place.

READ LEN=39 ==>220 s1.digm.com ESMTP Postfix (2.5.6)02<==
093021 34500000 D5

Only the first READoperation is shown on the slide in its original format. To save space and allow the entire
session to fit on the slide, the remaining blank lines have been removed, along with the second line of trace
data. The hex 0D and hex 25 (carriage-return and line-feed) characters were replaced by "| " and "~"
characters, respectively.

This trace represents a successful send. You can see the SMTP commands being exchanged between
OBJECT/EMAIL and the MTA, along with the headers and body text of the message. SMTP replies from the
MTA begin with a three-digit status code. If there are problems communicating with the MTA, these status
codes and their messages are one of the first places to look. These status codes are defined in the SMTP
standard, which was originally RFC 821, then 2821, and is now 5321.

Using MCP EMAIL

2009 UNITE MCP-4005 43

So, What Good Is It?So, What Good Is It?

That completes the discussion of the OBJECT/EMAIL program and how you use it. Having that information,
the question is now, what good it? This next section of the presentation discusses some potential applications.

Using MCP EMAIL

2009 UNITE MCP-4005 44

MCP-4005 44

Advantages of OBJECT/EMAILAdvantages of OBJECT/EMAIL

� You already have it

� Easy to use

� Easy to configure
� Establish *INSTALLATION/OPTIONS file
� Optionally create your CANDE/MYOPTIONSfile
� Go for it

� Basic, but effective, capabilities
� Other solutions may have more features, but…
� OBJECT/EMAIL is good enough for many useful tasks
� Not either/or – can be used as a companion to EOM,

Goldeye, or other tools

OBJECT/EMAIL has a number of advantages.

• First, you already have it. The program has been bundled with every ClearPath MCP release since 7.0
(SSR 48.1).

• Second, it is quite easy to use. The program has a lot of options, but you don't need to know many of
them in order to send a simple message.

• Third, it's easy to configure. You need one line in the *INSTALLATION/OPTIONS global
configuration file to define the MTA, and an email address either in your USERDATArecord or an entry
in your CANDE/MYOPTIONSfile. With just that setup, you can send messages.

• Fourth, OBJECT/EMAIL has very basic email composing and sending capabilities, but they are
effective ones in the server-oriented MCP environment. Other solutions have more features, but
OBJECT/EMAIL is suitable for many useful tasks. It is also not an either/or situation – you can combine
the use of OBJECT/EMAIL with other email solutions, picking the one that is most suitable for each
task.

Using MCP EMAIL

2009 UNITE MCP-4005 45

MCP-4005 45

Some Uses for EMAILSome Uses for EMAIL

� Error/success notifications from WFL jobs

� Support for "lights-out" operations

� Send directly from application programs
� It's easy to do even in COBOL
� Can use enriched text or HTML for a sophisticated look

� Email yourself a data or printer backup file
� Need to know the file name (see USERBACKUPNAME)
� For emailing lots of printer files, use EOM or Goldeye

� Software/data distribution to remote sites
� Wrapped attachments allow sending any MCP file
� Not the best approach for really large files, though

Here are some examples of uses for OBJECT/EMAIL:

• Error/success notifications from WFL jobs.
This is the perhaps primary use for the program. Given WFL's ability to detect success or failure of the
tasks in a job, it is easy to run OBJECT/EMAIL and send a message to indicate that an activity has
completed successfully or had some problem. You can even attach files and printer output to document a
problem.

• Support for "lights-out" operations.
Many data centers run unattended, especially during non-prime hours. OBJECT/EMAIL can help
automate operations by sending status and error notifications, and automatically distributing data in the
form of email attachments.

• Sending email directly from application programs.
The API mode of OBJECT/EMAIL makes it very easy to compose and send messages from
applications, even those written in COBOL.

• Email yourself a data or printer backup file.
We have lots of ways to exchange data between the MCP environment and workstation environments –
FTP, shared network directories, Telnet, PWB, etc. OBJECT/EMAIL gives us another one. It is very
easy to email a data or printer file to yourself or a colleague. You only need to know the name of the file,
and can then include it in the body of the message or include it as an attachment. This is a little more
difficult for spooled printer files, but by setting the file attribute USERBACKUPNAME=TRUE, you can
control the name of a printer-backup file so that it can be attached to a message programmatically. I do
this quite frequently. If you are going to do a lot of printer distribution by email, though, EOM or
Goldeye PrintMailer are much more convenient (and probably more efficient) solutions to use.

• Software/data distribution to remote sites.
If you have multiple MCP sites, OBJECT/EMAIL gives you a way to distribute data, and even object
code, to those sites. This is probably not be best approach for really big files, but the program's ability to
wrap files before attaching them to an email message allows you to send virtually any MCP file to
anyone who has an email address.

Using MCP EMAIL

2009 UNITE MCP-4005 46

MCP-4005 46

A Real "Lights Out" ExampleA Real "Lights Out" Example

� Support for a customer in Canada
� Libra 300 running custom application
� No on-site MCP operations staff or system expertise
� Server is locked in a room 60 miles from main office

� Simple WFL-based scheduling system
� "Schedule/Master" job starts others with a STARTTIME

� Scheduled jobs create empty "marker" files to report
progress and completion

� Jobs use small WFL $INCLUDE file of email routines
� Jobs email own failures if possible
� Master job checks marker files at EOD and emails

overall success or individual failures
� Master job emails daily LOGANALYZER summaries

The preceding slide discussed some general ideas for employing OBJECT/EMAIL. The next series of slides
describes an application of the program I've made to a real "lights-out" environment.

I have a customer in Canada that is running a custom in-house application on a Libra 300. They have no on-
site MCP operations staff or system expertise. In fact, their Libra sits in a locked room at a satellite facility
about 60 miles from their main office, where most of the users are located. I am their MCP support, and only
visit the site occasionally. Until this past summer, it had been two years since I had been there. I support them
from San Diego over an Internet VPN, using Telnet, Terminal Server, PWB, network shares, FTP, and…
OBJECT/EMAIL!

Their batch processing requirements are modest. Users initiate batch reports from a menu-based COMS
application that builds parameter strings and starts WFL jobs. Reports print automatically. They have a few
regularly-scheduled jobs – primarily backups and file extracts. The Libra does not have a tape drive, so we
use a combination of SYSTEM/FILECOPYand WRAPto generate container files, which get transferred to the
Windows side of the Libra, where they are picked up by a Windows-based network backup system.

I built a "Schedule/Master" job that does a start on itself every weekday just after midnight. This job in turn
starts the other scheduled jobs with an appropriate STARTTIME. To monitor the scheduled jobs, each one
generates "marker" files (which are just directory entries; they have no data) to indicate they have finished
successfully. The scheduled jobs generate email messages if they detect problems in their processing. The
master job checks for these marker file at the end of the day and generates emails if any are missing. This
ensures that problems get reported even if one of the scheduled jobs crashes or gets DS-ed before it can
generate any emails. I wrote a WFL $INCLUDE file of email routines to standardize the error reporting and
make it easy to use.

The master job also runs some LOGANALYZERreports at the end of the day and emails them to me and
another contractor who does application program support. We use these to determine if any programs aborted
during the day. If necessary, we analyze programdumps (which the system is configured to write to PDUMP
files). We are currently using EOM to email these reports, because we have email configured in EOM, but
with just a little bit of work, we could have OBJECT/EMAIL do this instead.

This was only a couple of days' work to set up, and frankly, it works great. Instead of constantly monitoring
the system, we have been quite successful in getting it to tell us that there was a problem. I often know by the
end of my day in California whether a problem occurred, and sometimes can have a correction in place before
work at the customer site starts the next day.

Using MCP EMAIL

2009 UNITE MCP-4005 47

MCP-4005 47

The WFL EMAIL Utility RoutinesThe WFL EMAIL Utility Routines
SUBROUTINE EMAILER (STRING ADDR VALUE, STRING SUBJ VALUE, STRING MSG V ALUE,

STRING EMAILOPTIONS VALUE, STRING BODYTITLE VALUE);
BEGIN
STRING PARAM;
...
RUN *OBJECT/EMAIL (PARAM) [T];
...
END EMAILER;

SUBROUTINE NOTIFY (STRING SUBJ VALUE, STRING MSG VALUE);
BEGIN
EMAILER (EMAILNOTIFYLIST, SUBJ,

TIMEDATE(DISPLAY) & "^Job " &
STRING(MYJOB(MIXNUMBER),*) & " " & MYJOB(NAME) & "^ ^" &
MSG, "", "");

END NOTIFY;

SUBROUTINE TASKNOTIFY(TASK T, STRING SUBJ VALUE);
BEGIN
STRING MSG;
MSG:= "Task Notify -- " & SUBJ & "^^Task: " & T(TYPE) & " " &

STRING(T(JOBNUMBER),*) / STRING(T(MIXNUMBER),*) & " " & T(NAME) &
"^^History: " & T(HISTORYTYPE) & " " & T(HISTORYCAU SE) &
", Value=" & STRING(T(VALUE),*) & "^" & T(STACKHIST ORY);

NOTIFY (SUBJ, MSG);
END TASKNOTIFY;

This slide shows an extract from the WFL $INCLUDEfile of email routines I wrote to support email
notifications from the scheduled jobs. The source for these routines and some of the scheduled jobs is
included in the sample files accompanying the presentation materials.

The file has just three routines:
• EMAILERformats a parameter string and executes OBJECT/EMAIL as a program. It accepts string

parameters for the email address list, the subject line, message body text, sending options, and an
optional file title for more body text. This routine contains mostly string manipulation code to format the
parameter for OBJECT/EMAIL. This formatting code has been excluded from the slide.

• NOTIFY is a utility routine to call EMAILERto send a simple message with a heading containing the
date, time, job mix number, and job name.

• TASKNOTIFYcalls NOTIFY to send a more complex message. This routine is intended for use when a
task terminates. In addition to the heading formatted by NOTIFY, this routine reports the task's mix
number and name, history attributes (which describe the type of abort), TASKVALUE, and stack history
string (the list of code addresses and line numbers of the most recent procedure calls).

We will see some examples of the output from these routines on the next few slides.

We maintain the list of email addresses where messages are to be sent in a text file, CANDE/NOTIFYLIST,
under the production usercode that is used with the scheduled jobs. At present, these message are sent to the
application support contractor, the IT manager, and me. The name of that file, along with its "%" prefix to
indicate a file-based distribution list, is stored in the WFL variable EMAILNOTIFYLIST , which is part of the
$INCLUDE file.

Using MCP EMAIL

2009 UNITE MCP-4005 48

MCP-4005 48

Using the EMAIL Utility RoutinesUsing the EMAIL Utility Routines
DO BEGIN

INITIALIZE (DT);
RUN *SYSTEM/NXSERVICES/PCDRIVER (BUSHARE & " " & "R EMOVE MPDB.con;" &

"BINARYDATATOPC " & BUPREFIX/"MPDB" ON BUFAMILY & " MPDB.con") [DT];
IF DT ISNT COMPLETEDOK THEN

BEGIN
TV:= DT(VALUE);
TASKNOTIFY(DT, "MPDB transfer failed, retry=" & STRING(RETRIE S,*) &

", error=" & STRING(TV MOD 64,*) & ", step=" & STRI NG(TV DIV 64,*));
RETRIES:= RETRIES+1;
WAIT (300);
END;

END
UNTIL RETRIES > RETRYMAX OR DT IS COMPLETEDOK;

IF DT IS COMPLETEDOK THEN
BEGIN
MARKMAKE(MARKID, "MPDB/COMPLETED");
IF RETRIES > 0 THEN

NOTIFY("MPDB successful backup recovery",
"MPDB backup run completed OK on retry #" & STRING(RETRIES,*));

END
ELSE

BEGIN
FATALERROR:= TRUE;
NOTIFY("MPDB backup failed", "Transmission retries exceed ed");
END;

This next slide shows a portion of the code from the daily backup job. This snippet attempts to transfer a
wrapped container file produced by the backup to a network share on the Windows side of the Libra 300 (the
name of which is in the variable BUSHARE). The transfer is done in a loop using the SMB file transfer utility
*SYSTEM/NXSERVICES/PCDRIVERthat is bundled with the standard MCP release.

If the file transfer utility terminates abnormally, the job calls TASKNOTIFYto tell us about it and restarts the
transfer. After some number of unsuccessful retries, the job gives up and sends us message to say so. If a retry
is successful, the job also sends us an email so we know we can ignore the previous error messages. If the
transfer succeeds on the first try, no email is sent at all. MARKMAKEis a routine that will generate a "marker"
file (the source for these routines, also in a WFL $INCLUDE file, are included with the presentation samples
as well).

Using MCP EMAIL

2009 UNITE MCP-4005 49

MCP-4005 49

On a Good Day…On a Good Day…
TO: Montreal IT <IT@Montrealco.com>,

Paul Kimpel <paul.kimpel@digm.com>
DATE: FRI, 25 SEP 2009 23:59:02 -0400
FROM: "MCP-PROD" <IT@Montrealco.com>
SUBJECT: Daily schedule SUCCESS

11:59 PM FRIDAY, SEPTEMBER 25, 2009
Job 8573 SCHEDULE/MASTER

All scheduled jobs completed successfully.

On a good day, when everything goes properly with the scheduled jobs, the master job sends us one email to
give us the news.

The message shown on the slide is an example of output from the NOTIFY routine.

Using MCP EMAIL

2009 UNITE MCP-4005 50

MCP-4005 50

On a Not So Good Day…On a Not So Good Day…
TO: Montreal IT <IT@Montrealco.com>,

Paul Kimpel <paul.kimpel@digm.com>
DATE: FRI, 3 JUL 2009 03:18:26 -0400
FROM: "MCP-PROD" <IT@Montrealco.com>
SUBJECT: Daily schedule ERROR

3:18 AM FRIDAY, JULY 3, 2009
Job 466 SCHEDULE/MASTER

Some scheduled jobs did not complete:
BACKUP/DAILY/MPDB

If one of the scheduled jobs does not complete successfully, the master job sends a summary email at the end
of the day listing the jobs that had problems. This message is sent instead of the "good news" one on the prior
slide. The failed job will typically have sent a more detailed message about the problem prior to this one,
unless it aborted or was DS-ed.

Using MCP EMAIL

2009 UNITE MCP-4005 51

MCP-4005 51

The Failed Job Sent This…The Failed Job Sent This…
TO: Montreal IT <IT@Montrealco.com>,

Paul Kimpel <paul.kimpel@digm.com>
DATE: FRI, 3 JUL 2009 03:08:26 -0400
FROM: "MCP-PROD" <IT@Montrealco.com>
SUBJECT: MPDB transfer failed, retry=3, error=6, st ep=0

3:08 AM FRIDAY, JULY 3, 2009
Job 487 BACKUP/DAILY

Task Notify -- MPDB transfer failed, retry=3, error= 6, step=0

Task: PROCESS 487/1579 *SYSTEM/NXSERVICES/PCDRIVER

History: DSEDV PROGRAMCAUSEV, Value=6
003:010F:5 (94320000)

This slide shows an example of a message sent when one of the scheduled jobs detects a problem. This
message is an example of the output from the TASKNOTIFYroutine.

Using MCP EMAIL

2009 UNITE MCP-4005 52

MCP-4005 52

Emailing LOGANALYZER ResultsEmailing LOGANALYZER Results
BEGIN JOB LOGMAILER;

CONSTANT TOLIST = "Paul Kimpel <paul.kimpel@digm.co m>";
CONSTANT LOGFAM = "DISK";
STRING LOGNAME;
TASK LT;

LOGNAME:= "LOGMAIL/" & TIMEDATE(YYYYMMDD) / TIMEDAT E(HHMMSS) /
STRING(MYSELF(MIXNUMBER),5);

LOG PRINTER USERCODE .
IOERROR MAINFRAME OPERATOR TEXT IDENT
ABORT BOT EOT MSG [LT];

FILE LINE (USERBACKUPNAME, FILENAME=#LOGNAME, FAMIL YNAME=#LOGFAM);

IF LT IS COMPLETEDOK THEN
RUN *OBJECT/EMAIL("SEND " & TOLIST & "//Daily Log R eport");

FILE BODY (FILENAME=#LOGNAME, FAMILYNAME=#LOGFAM);
ELSE

RUN *OBJECT/EMAIL("SEND " & TOLIST & "//Log Report ERROR//" &
STRING(LT(JOBNUMBER),*) / STRING(LT(MIXNUMBER),*) & " " & LT(NAME) &
"^^History: " & LT(HISTORYTYPE) & " " & LT(HISTORYC AUSE) &
", Value=" & STRING(LT(VALUE),*) & "^" & LT(STACKHI STORY));

? END JOB

One final example – this slide shows how to email a printer file to yourself using OBJECT/EMAIL:

• The job generates a string value and stores it in the variable LOGNAME. This value will be used to name
the printer file, and is designed to be reasonably unique.

• The WFL LOGstatement runs SYSTEM/LOGANALYZER. The file equation for LINE affects the printer
file that LOGANALYZERproduces. The attributes specified are:

– USERBACKUPNAMEcontrols how the printer-backup file will be named. The default, when this
attribute is FALSE, is to use the system's BD/= naming convention. When TRUE, the name of the
printer-backup file is taken from the FILENAMEattribute.

– FILENAMEindicates the name to be assigned to the printer-backup file. Since you are generating
this name, you need to take care that the name is unique and will not cause a previously-created file
of the same name to be removed.

– FAMILYNAMEcan be used to specify the disk family where the printer-backup name will be written
by the system. If this is not specified, the file will be written to the DL BACKUPfamily. Do notuse a
TITLE or LTITLE attribute that contains an ONclause to name the printer-backup file. The
presence of the ONclause changes the file to KIND=DISK .

• The WFL statements following the LOGANALYZERrun deal with the results. If the run completed
successfully, the job executes OBJECT/EMAIL and file-equates the printer-backup file so that it will
become the body of the message (note that no body text is present in the parameter string). If there is an
error, the job sends an email message similar to the one for theTASKNOTIFYroutine discussed earlier.

This job does not dispose of the printer backup file that was generated. It could be removed by the job,
released for normal printing, or perhaps cleaned up later by some site-developed file retention and purging
process.

Using MCP EMAIL

2009 UNITE MCP-4005 53

MCP-4005 53

ReferencesReferences

� System Software Utilities Operations Reference Manual
� Section 9, "EMAIL Utility"
� Appendix A, "GENERALSUPPORT Entry Points"

� RFCs (http://www.ietf.org)
� SMTP – RFC 821 → 2821 → 5321
� Message format – RFC 822 → 2822 → 5322
� MIME – RFC 2045-2049, 2076, 4021

� "Email from the A-Series," David E. Erikson, Gregory's A-
Series/ClearPath Technical Journal, vol.15 #6, Sep. 2001

� Goldeye Software
� http://www.goldeye.com

� This presentation
� http://www.digm.com/UNITE/2009
� Web site includes samples and utilities

The documentation for OBJECT/EMAIL is contained in the Unisys System Software Utilities Operations
Reference Manual. The MYOPTIONSUPPORTentry points to GENERALSUPPORTare described in
Appendix A of that Document.

The standards for email are contained in Request for Comments (RFC) documents, all of which are available
from the IETF web site.

David Erikson's article in the Gregory journal from September 2001 describes how to set up IIS SMTP and
FTP files from the MCP to the IIS "Pickup" folder.

The Goldeye web site provides information on their MCP email products and provides contact and pricing
information.

Finally, a copy of this presentation and a set of demonstration and sample files is available on our web site
under the URL shown on the slide.

Using MCP EMAIL

2009 UNITE MCP-4005 54

End

Using MCP EMAIL

End

Using MCP EMAIL

2009 UNITE Conference

Session MCP-4005

