
Using Stream Files

2016 UNITE MCP 4028 1

Using Stream Files
2.0

Using Stream FilesUsing Stream Files
2.02.0

Paul Kimpel
2016 UNITE Conference

Session MCP 4028

Wednesday, 12 October 2016, 11:00 a.m.

Copyright © 2016, All Rights Reserved Paradigm Corporation

Using Stream Files – 2.0

2016 UNITE Conference
Cleveland, Ohio

Session MCP 4028

Wednesday, 12 October 2016, 11:00 a.m.

Paul Kimpel

Paradigm Corporation
San Diego, California

http://www.digm.com

e-mail: paul.kimpel@digm.com

Copyright © 2016, Paradigm Corporation

Reproduction permitted provided this copyright notice is preserved
and appropriate credit is given in derivative materials.

Using Stream Files

2016 UNITE MCP 4028 2

2016 MCP 4028ParadigmParadigmParadigm 2

TopicsTopicsTopics

 What are stream files?
 How do they differ from traditional files?

 Programming for stream files

 Byte stream files – the really useful special case
 Programming for byte streams

 Byte stream file transfer mechanisms

 Byte stream utilities for the MCP

 Introduction to STREAMIOH
 MCP access to line-delimited text files

 References and examples

This presentation discusses stream files and their use under the Unisys ClearPath MCP.

We'll talk about how stream files differ from traditional MCP files, and the restrictions that apply to streams
that do not apply to other kinds of files. We'll also talk about the file attributes that are relevant to stream files
and how you program for streams.

Stream files are interesting and generally applicable to MCP applications, but there is a special case – byte
stream files – that are the most interesting and useful. We'll spend most of the time taking about the byte
stream version, including how you program specifically for byte streams, utilities for them in the MCP, and
file transfer mechanisms.

Finally, we'll briefly examine some examples of Algol and COBOL programs that use byte stream files, and
point out areas of the Unisys documentation where you can get more information.

Using Stream Files

2016 UNITE MCP 4028 3

2016 MCP 4028ParadigmParadigmParadigm 3

About Stream FilesAbout Stream Files

 Apply to disk, printer backup, and tape

 In the MCP for more than 25 years

 More similar to file structures found on other
types of systems
 Windows

 UNIX, Linux

 Two main categories for the MCP
 Record streams

 Byte streams

Stream files are a variation on the file structures we have traditionally used with the MCP. They have been
around for more than twenty-five years, at least since Mark 3.9.

Stream methods can be applied to files on disk, printer backup, or tape. In this presentation, we'll focus on
stream files for disk and, to a lesser degree, for printer backup.

While the ClearPath MCP has a very rich I/O subsystem, the way that files are traditionally structured under
the MCP differs quite a bit from the way files are typically structured on other systems. In particular,
traditional MCP file structures are different from, and often incompatible with, files from Windows and
UNIX systems.

Files on these other systems are often unstructured, without the formal record and block formats we are used
to with the MCP. In other words, these unstructured files are stored simply as a "stream" of bytes.

The MCP supports two categories of stream files that bridge the gap between our traditional file structures
and the unstructured approach common to other systems.

• Record streams are essentially traditional MCP files without blocks

• Byte streams are a special case of record streams, and are essentially the same as the unstructured files
on other systems.

Since file interchange with other systems (especially using FTP and Client Access Services) are currently
such important topics, we will talk about byte stream files in some detail.

Using Stream Files

2016 UNITE MCP 4028 4

2016 MCP 4028ParadigmParadigmParadigm 4

Where Do Stream Files Come From?Where Do Stream Files Come From?

 Client Access Services (NX/Services)

 The Redirector

 FTP file transfer

 CD-ROM files

 Print System PC, STREAMFILE and RTF IOHs

 MCP-based applications
 Data files from all languages

 Permanent Directory (PERMDIR) files

 Web server (Atlas) file uploads

 POSIX interfaces

The MCP environment can access stream files from a number of sources.

• A common source of stream files is Client Access Services. When you transfer a file to an MCP shared
directory using Microsoft Networking, by default you get a byte stream file. There are also named pipes
that can create either byte streams or traditional files on an MCP-based share.

• The Redirector is the complement to Client Access Services. It allows you to read and create files from
an MCP application on a remote share, say on a Windows file server, or any other system that supports
Common Internet File System (CIFS, port 445) or Server Message Block (SMB, port 139) protocols.
Since you are directly accessing files stored under another operating system, they are not traditional
MCP files, and MCP applications must access them as byte streams.

• Byte stream files can also be created by FTP. Files generated by incoming FTP transfers with
FTPSTRUCTURE=FTPFILE are stored as byte streams. This includes the FTP mapping styles RAW
and FTPDATA.

• Files read directly from ISO 9660 and Joliet CD-ROM media are always accessed as byte stream files.

• The Print System can both generate and print byte stream files. You can specify file attributes that will
cause the Print System to generate byte stream files directly instead of the standard printer backup file
format. Files generated by the PC, newer STREAMFILE, and the RTF I/O Handlers in the
PRINTSUPPORT library are byte stream files. The Print System can also read stream data files
generated by other systems and route them for local or remote printing.

• The Atlas web server can receive file uploads and store them in the MCP file system. Generally these
files will be in the form of stream files.

• MCP-based applications in all languages can generate and read stream files. We will discuss later how
this can be done using the Algol and COBOL-74/85 languages. Files produced by the POSIX interfaces
(typically used with C) inherently read and write byte stream files. In addition, permanent directories
themselves are considered to be stream files.

Using Stream Files

2016 UNITE MCP 4028 5

2016 MCP 4028ParadigmParadigmParadigm 5

Traditional MCP File StructuresTraditional MCP File Structures

 Fixed- and variable-length records

 Block = buffer = physical I/O transfer unit

 Blocks on disk occupy a whole number of sectors
(180 byte increments)
 Records do not span physical blocks

 Blocks do not span disk areas

 Blocks typically contain wasted space at the end

 File organizations
 "Flat" files

 Index Sequential (KEYEDIOII) files

 Relative files

To understand how stream files relate to traditional MCP files, it's helpful to consider how traditional disk
files are structured.

Traditional files support both fixed- and variable-length records of various types as determined by the
BLOCKSTRUCTURE attribute. All traditional files share the characteristic that records are wholly contained
within blocks. A block always contains some whole number of records. The size of the block determines the
size of the physical I/O buffer in memory and the size of the physical I/O transfer between memory and the
disk device. Thus, there is a relationship in traditional files between logical record sizes and physical I/O sizes
– physical I/Os are always at least as large as a record, and at least one record is always transferred in each
physical I/O.

Another characteristic of disk files is that blocks always start on a 180-byte sector boundary and occupy a
whole number of contiguous sectors. The reason for this is that disk devices can only address to a sector
boundary. This leads to a number of consequences:

• While records may be of variable length, blocks for a given file are always of a fixed size.

• There is a resource/performance tradeoff between relatively large and relatively small blocks. Larger
blocks reduce the number of I/Os (and often, dramatically reduce the program elapsed time), but require
more memory while the file is open.

• Blocks must start on a disk sector boundary, but do not necessarily fill out a whole number of sectors. It
is often the case that the block size is not an exact multiple of 180 bytes and there is some amount of
space left over in the last sector for a block. This left-over space, or "block slop", is wasted. Good file
design practices attempt to minimize this wasted space, but often cannot eliminate it.

• Because blocks are the unit of physical I/O transfer, blocks cannot span disk areas. For this reason, the
MCP rounds up, if necessary, the program-specified area size for a file to the next whole multiple of
sectors in a block.

In addition to the blocked behavior of disk files, the MCP supports a number of internal file layouts, as
determined by the FILEORGANIZATION attribute. This attribute describes the internal organization of the
file at a level higher than records and blocks. File organizations break down into three main categories:
normal or "flat" files, index sequential files of a couple of varieties, and COBOL-74/85 relative organization
files.

Using Stream Files

2016 UNITE MCP 4028 6

2016 MCP 4028ParadigmParadigmParadigm 6

Stream File StructuresStream File Structures

 Records written in a continuous stream
 Records span sector boundaries

 Records span disk area boundaries

 No blocks! No wasted space.

 Buffer = physical I/O transfer unit

 Fixed- and variable-length records

 Flat files only
 FILEORGANIZATION = NOTRESTRICTED

 Cannot be used with indexed or relative files

By contrast, stream files have a number of significant differences.

• The most significant difference between stream and traditional files is that stream files do not have
blocks! In fact, specifying BLOCKSIZE for a stream file results in a non-fatal attribute error. Stream
files completely separate the concepts of logical records and physical I/Os. Physical disk I/Os must still
start on a sector boundary and cover a whole number of sectors, but logical records are not constrained
to a pre-determined block size and can span area boundaries, hence there is no wasted space.

• In a stream file, logical records are simply written continuously across the allocated space for a file.
There are no delimiter codes between records, just as with traditional files. Individual records span
sector boundaries, and can even cross area boundaries. The MCP Logical I/O routines automatically
fragment and reassemble records as necessary – application programs simply perform READs and
WRITEs the same way they do with traditional files.

• Although stream files do not support the concept of blocks, there is still a memory buffer area and a
physical I/O transfer process between memory and the disk device. A logical file still has I/O buffers
associated with its File Information Block (FIB), but in the default case, the MCP determines the size of
these.

• Stream files support all of the fixed- and variable-length formats except
BLOCKSTRUCTURE=LINKED.

• The primary restriction on stream files is that they are for flat file organizations only.
NOTRESTRICTED and RELATIVE are the only values of FILEORGANIZATION allowed.

Using Stream Files

2016 UNITE MCP 4028 7

2016 MCP 4028ParadigmParadigmParadigm 7

Record SpanningRecord Spanning

Area

Rec Rec Rec Rec Rec Rec Rec Rec Rec
Block Block Block

Traditional Files

Rec

Area

Rec Rec Rec Rec Rec Rec Rec Rec

Stream Files

Wasted
space

This record spans two areas

This diagram shows the difference in record and block structures for traditional and stream files.

With traditional files, there is no record spanning. Records fit entirely within blocks, blocks fit entirely within
a whole number of sectors and within the space allocated for a disk area. If the block size is not an exact
multiple of 180 bytes, there is wasted space on disk at the end of each block.

With stream files, there are no blocks, and the records are simply stored contiguously in the disk area. If the
last record in an area does not fit, it is split. The part of the record that will fit in the area is written there; the
rest of the record is written to the next area. Records and fragments of records are assembled in memory
buffers and written to disk in 180-byte multiples. These buffers are typically a few thousand words long. You
can control the size of these with the BUFFERSIZE attribute, but this sizing is normally left to the MCP.

Unlike traditional files, which always read or write whole records with each physical I/O, stream files may
perform more than one physical I/O to read or write one logical record.

This example shows fixed-length records, but the behavior is exactly the same with variable-length records
for both traditional files and streams.

Using Stream Files

2016 UNITE MCP 4028 8

2016 MCP 4028ParadigmParadigmParadigm 8

Disk File Configuration AttributesDisk File Configuration Attributes

 FILEORGANIZATION
 NOTRESTRICTED (default)

 KEYEDIOII, RELATIVE, some others…

 BLOCKSTRUCTURE
 FIXED (default)

 VARIABLE, EXTERNAL, etc.

 FILESTRUCTURE
 ALIGNED180 (default)

 BLOCKED

 STREAMSTREAM

Three file attributes control the general format and nature of disk files: FILEORGANIZATION,
BLOCKSTRUCTURE, and FILESTRUCTURE.

• FILEORGANIZATION, as previously mentioned, describes the high-level organization of data within a
file. There are three main classes of organization: normal or "flat" files, indexed sequential files, and
relative files.

• BLOCKSTRUCTURE determines the format of records within a block. A more intuitive name for this
attribute would probably be "recordstructure". It indicates whether the records are fixed length, variable
length (and which of several varieties), or externally determined from the physical file medium.

• FILESTRUCTURE determines how the data is physically laid out on the disk. This attribute has three
values:

– ALIGNED180. This is the default layout and the one used by traditional files. Records are wholly
contained within blocks, blocks are the physical unit of I/O transfer, all blocks start on a sector
boundary, sectors are 180 bytes in size, and all blocks occupy a whole number of sectors. These
files can be "reblocked" – that is, they can be read with a different block size than the one they were
created with, as long as the original and new block sizes are integral multiples of the sector size.

– BLOCKED. This is similar to ALIGNED180, but has some differences. Records are grouped in
blocks, and blocks are written on sector boundaries, but the sectors are not required to be 180 bytes
in size. Memory buffers and physical I/Os may be in multiples of the block size.
FILEORGANIZATION must be NOTRESTRICTED. Reblocking is not allowed.

– STREAM. This is the attribute that makes a file a stream file. As discussed previously, records are
written to the disk in a continuous stream, spanning sector and area boundaries as necessary.
Physical I/Os are buffered in memory and typically span multiple records. FILEORGANIZATION
must be NOTRESTRICTED or RELATIVE. A feature somewhat like reblocking, using the
ANYSIZEIO attribute, is supported.

Using Stream Files

2016 UNITE MCP 4028 9

2016 MCP 4028ParadigmParadigmParadigm 9

Basic Stream File AttributesBasic Stream File Attributes

 FILESTRUCTURE = STREAM

 FILEORGANIZATION
 NOTRESTRICTED (the usual case)

 RELATIVE

 Do not specify BLOCKSIZE

 BUFFERSIZE = [words]
 Specifies the physical I/O buffer size

 Usually best to use system default

 AREALENGTH / AREASIZE [framesize/records]
 Usually best to use system default

 Default <= 1024 sectors

Several attributes deserve special consideration when using stream files.

• The FILESTRUCTURE attribute must have a value of STREAM. Since the default is ALIGNED180,
this must be specified explicitly for the file.

• FILEORGANIZATION may be NOTRESTRICTED or RELATIVE. NOTRESTRICTED is the default,
and for most applications, is the only value of interest.

• BLOCKSIZE may not be specified for a stream file. Attempting to do so causes a non-fatal attribute
error at run time.

• BUFFERSIZE determines the number of words in memory buffers for the file and the size of physical
I/O transfers to disk. This attribute can be read for any type of file at any time. It can be set when a file
is closed for a FILESTRUCTURE of BLOCKED or STREAM. The Unisys documentation recommends
that you normally let the MCP determine the buffer size automatically, but some programs may benefit
from larger or smaller values. In general, for stream files, do not set this attribute to a value smaller than
the size of one record plus two sectors. The default value will be between 2,000 and 5,000 words,
depending on the amount of memory configured for your system. For details, see the discussion of
BUFFERSIZE in the File Attributes Programming Reference Manual and the BUFFERGOAL option of
the SF command in the System Commands Operations Reference Manual.

• AREALENGTH or AREASIZE. These attributes determine the physical size of disk areas, as for
traditional files. AREALENGTH is specified in terms of FRAMESIZE units, while AREASIZE is
specified in terms of records. The Unisys documentation recommends that, for stream files, the MCP
determine this value. The MCP default will be the largest area size that is a multiple of MAXRECSIZE
but not larger than 1,024 sectors. However, for very large files, you will probably want to override that
default. For stream files, you will also usually want to set FLEXIBLE=TRUE. Note that AREASIZE is
not meaningful for stream files if BLOCKSTRUCTURE is other than FIXED.

Using Stream Files

2016 UNITE MCP 4028 10

2016 MCP 4028ParadigmParadigmParadigm 10

Stream File RestrictionsStream File Restrictions

 Not supported
 Other FILEORGANIZATIONs

 BLOCKSTRUCTURE = LINKED

 UPDATEFILE = TRUE with synchronized I/O
 Algol binary I/O [e.g., WRITE(F,*,<list>);]

 Checkpoint/restart

 CANDE work files

 Possible problem areas
 PROTECTION = PROTECTED

 Updating variable length records

There are some restrictions on other file attributes used with stream files and how such files can be used.

• FILEORGANIZATION values other than NOTRESTRICTED and RELATIVE are not allowed.

• The BLOCKSTRUCTURE value LINKED (normally used only by FORTRAN) is not allowed. All other
BLOCKSTRUCTURE values can be used with stream files.

• The combination of update I/O (UPDATEFILE=TRUE) and synchronized I/O (SYNCHRONIZE=OUT
or writes with the SYNCHRONIZE option) is not allowed. Attempting to do this turns off
synchronization.

• Algol Binary I/O (using a "*" as the format part with a list) is not allowed.

• Programs cannot use checkpoint/restart facilities in the MCP if they have stream files open.

• CANDE does not support stream files. You cannot GET, MAKE, LIST, etc. a stream file from CANDE.
You can, however, use Library/Maintenance commands (COPY, CHANGE, REMOVE, ALTER) and the
PRINT command with stream files.

• Stream files can be listed, copied, etc. with SYSTEM/DUMPALL.

There are some other file uses that are potential problem areas when applied to stream files:

• Setting PROTECTION=PROTECTED will preserve the end-of-file position for open files across a
system restart. However, for stream files, the EOF will be recovered to the end of the last sector written,
which will typically be after the end of the last record written.

• If you rewrite a variable-length record and the size of the record differs from its original size, the MCP
will generate a record length (data size) error.

Using Stream Files

2016 UNITE MCP 4028 11

2016 MCP 4028ParadigmParadigmParadigm 11

Additional Stream File RestrictionsAdditional Stream File Restrictions

 Cannot interrogate block attributes:
 BLOCKSIZE

 BLOCK

 CURRENTBLOCK

 If BLOCKSTRUCTURE is not FIXED,
also cannot interrogate:
 AREASIZE

 LASTRECORD

Because stream files are not blocked like traditional files, attempting to access block-oriented attributes will
result in a non-fatal attribute error at run time. These attributes include

• BLOCKSIZE

• BLOCK

• CURRENTBLOCK

If BLOCKSTRUCTURE has a value other than FIXED, access to two additional attributes is not valid, since in
that case both attributes are in units of blocks rather than records.

• AREASIZE

• LASTRECORD

Using Stream Files

2016 UNITE MCP 4028 12

2016 MCP 4028ParadigmParadigmParadigm 12

Programming for Record Stream FilesProgramming for Record Stream Files

 For input files:
 Specify DEPENDENTSPECS=TRUE

 Perhaps specify BUFFERSIZE

 For output files:
 Must specify FILESTRUCTURE = STREAM

 Do not specify BLOCKSIZE

 Perhaps specify BUFFERSIZE or AREALENGTH

 Probably want to set FLEXIBLE = TRUE

 I/O statements
 Same as for traditional files

 Sequential and random I/O work the same as for
traditional files

Programming for record-oriented stream files is easy. The major consideration is the value of several
attributes when the file is opened.

For input files, the easiest thing to do is specify DEPENDENTSPECS=TRUE. Since FILESTRUCTURE,
BLOCKSTRUCTURE, and FILEORGANIZATION are physical file attributes, they will be established
automatically from the disk header. You can additionally specify BUFFERSIZE, if desired.

For output files, you must specifically declare the file as a stream file, along with record size and any other
attributes you need to control.

• In most cases you can simply replace the BLOCKSIZE specification with
FILESTRUCTURE=STREAM.

• Depending on your specific requirements, you may want to specify the number of words for memory
buffers using BUFFERSIZE or the length of disk areas with AREALENGTH. In most cases, the MCP
defaults for these attributes will suffice.

• If you are creating or extending a stream file, you will probably want to set FLEXIBLE=TRUE, since
you do not typically control the area size of stream files.

Once stream files are open, there are essentially no differences compared to the way you access traditional
files. The syntax and semantics of READ, WRITE, SEEK, etc., are identical for stream files. Both random and
sequential I/O are supported for stream files in the same way they are for traditional files.

Using Stream Files

2016 UNITE MCP 4028 13

Byte StreamsByte Streams

All of the foregoing discussion has been about stream files in general, and specifically about record-oriented
streams. These record streams are useful and efficient. They avoid wasted space on disk and eliminate the
need to perform block sizing calculations when designing files. Because the system determines buffer sizes
based on total system memory, physical I/O for stream files is often at least as efficient as for traditional files.
Except for some inconveniences (such as the inability to access them with CANDE), streams are arguably a
superior file structure for many applications.

Even so, the discussion to this point has primarily been in preparation for a special case of stream files – byte
streams.

Using Stream Files

2016 UNITE MCP 4028 14

2016 MCP 4028ParadigmParadigmParadigm 14

About Byte Stream FilesAbout Byte Stream Files

 Special case of stream files

 Probably the most common and useful
application of stream files

 Similar to unstructured files on other systems
 Text or line-delimited files

 Binary, image, and executable files

Byte streams are typically the most common and most useful application of stream file structures. They
closely resemble the unstructured nature of files for other systems, and are usually compatible with them.
Such files include:

• Text or line-delimited files, e.g., those produced by NotePad and other text editors.

• Binary byte streams of all kinds. These include application specific file formats, bitmaps and other
image files, and executable files for other systems.

Given the ease and increasing importance of file transfer between the MCP and other operating systems, and
the excellent integration with Microsoft Windows that is a hallmark of the ClearPath architecture, the ability
to generate and process byte streams directly in MCP applications is extremely useful and often necessary.
Byte streams can also be useful in some applications that are solely MCP based.

The remainder of this presentation will focus on these byte streams.

Using Stream Files

2016 UNITE MCP 4028 15

2016 MCP 4028ParadigmParadigmParadigm 15

Byte Stream CharacteristicsByte Stream Characteristics

 File is considered to be a continuous "stream" of
8-bit bytes (octets)

 No formal record structure

 Bytes in the file are individually addressable

 Programs can read and write
 Arbitrary numbers of bytes

 Starting at arbitrary positions in the file

A byte stream file is simply a stream of contiguous bytes. The operating system assumes no record or block
structure. Any structure within the file must be handled by the application programs reading and writing the
file.

Another important characteristic of byte streams is that the bytes are individually addressable. Programs can
seek to any byte position in the file and read an arbitrary number of bytes from that position. To application
programs, byte streams are essentially one long character string that can be accessed either sequentially or
randomly.

Note that this is a logical view of the file. Physically, the file must be read and written in units of disk sectors.
The logical I/O subsystem must handle buffering of data between the disk and the application programs, and
must worry about the details of logical reads and writes starting at other than sector boundaries.

Using Stream Files

2016 UNITE MCP 4028 16

2016 MCP 4028ParadigmParadigmParadigm 16

Byte Streams as Text FilesByte Streams as Text Files

 Text files use delimiter characters to divide the
data into "lines"

 Systems use various conventions
 Windows, DOS CR-LF

 UNIX, CTOS LF

 Macintosh (< OS X) CR

 Macintosh (OS X) LF

 Some text formats also allow form feeds (FF) as
both a line delimiter and a new-page indicator

One of the most common uses of byte streams on other systems is for text, or line-delimited files. If you have
ever used a text editor on another system, such as NotePad under Windows or vi under UNIX, you have been
manipulating a text file.

Text files use delimiter characters to divide the file into logical lines. You can think of these lines as "records"
of the file, but the concept of a record size for a text file does not exist. A line can be as long or short as
necessary, although some applications place a limit on the maximum length they will correctly handle, often
255 or 1023 bytes.

Different systems use different delimiters to divide a file into lines. There are three common conventions:

• Microsoft Windows and DOS operating systems have traditionally used a carriage-return (CR) followed
by a line-feed (LF) as the delimiter. Although the delimiter is officially a two-character pair, many text
editors and software tools under Windows will accept either a carriage-return, or a line-feed, or the CR-
LF pair as a line delimiter.

• UNIX systems have traditionally used the line-feed (LF) character as a line delimiter. This is sometimes
referred to as the "new line" (NL) character. CTOS systems also used this convention.

• Apple Macintosh systems prior to OS X use CR as the text delimiter.

• Apple Macintosh OS X systems are a variant of UNIX, and thus use LF as the line delimiter.

A form-feed (FF) in the text typically indicates the start of a new page if the file is sent to a printer. Many
applications also treat FF as a line delimiter.

Using Stream Files

2016 UNITE MCP 4028 17

2016 MCP 4028ParadigmParadigmParadigm 17

MCP Byte Stream FilesMCP Byte Stream Files

 Physical file requirements
 FILESTRUCTURE = STREAM

 MAXRECSIZE = 1

 FRAMESIZE = 8

 BLOCKSTRUCTURE = FIXED (default)

 EXTMODE = (any 8-bit representation)

 FILEORGANIZATION = NOTRESTRICTED (default)

 Logical file requirements
 UPDATEFILE = FALSE (default)

 ANYSIZEIO = TRUE (usually necessary)

The MCP supports byte stream files as a special case of record streams. You define a byte stream file the
same way you define a record stream file, but a few attributes must have specific values.

The following physical attributes are associated with byte streams. These are stored the the disk header for
permanent files.

• FILESTRUCTURE must, of course, have a value of STREAM.

• MAXRECSIZE must have the value 1. Do not set MINRECSIZE.

• FRAMESIZE must have the value 8, indicating eight-bit character frames.

• BLOCKSTRUCTURE must have the value FIXED. This is the default for this attribute.

• EXTMODE must be one of the values that is consistent with an 8-bit data frame. EBCDIC is the default,
but ASCII, OCTETSTRING, and other mnemonics for 8-bit national character sets are also allowed.

• FILEORGANIZATION must be NOTRESTRICTED. This is the default for this attribute. RELATIVE
is not permitted for byte stream files.

Some logical attributes also affect byte streams. These are not stored in the disk header, but may be specified
at run time before the file is opened.

• Update I/O is not supported for byte streams, so UPDATEFILE must be FALSE. This is the default
value for this attribute. You can open a byte stream in input-output mode and perform mixed reads and
writes, but the sequential rewrite after read behavior implied by the UPDATEFILE attribute is not
supported.

• When using byte stream files, you almost always want to set ANYSIZEIO to TRUE. The reason for this
will become clear shortly.

Note that, since MAXRECSIZE=1, record spanning is never an issue with byte stream files. However, a
program could issue a logical read or write request that would span an area boundary, and the MCP would
perform more than one physical I/O to satisfy the request.

Using Stream Files

2016 UNITE MCP 4028 18

2016 MCP 4028ParadigmParadigmParadigm 18

Restrictions with MCP Byte StreamsRestrictions with MCP Byte Streams

 Physical and logical attributes must be as
specified on the prior slide

 Not usable with CANDE and most traditional
MCP utility programs

 Programs are limited to 1 MB per logical read or
write operation

 Logical I/O does not directly support a "read line"
capability for line-delimited text files, but…
 Can read/write line-delimited files using STREAMIOH

 Allows an MCP app to access the lines as "records"

 More on this later…

There are a few additional restrictions on byte stream files over those for record streams.

• First, the physical attributes of the file must include:
– FILESTRUCTURE = STREAM
– MAXRECSIZE = 1
– FRAMESIZE = 8
– BLOCKSTRUCTURE = FIXED (default)
– FILEORGANIZATION = NOTRESTRICTED (default)
– EXTMODE must specify an 8-bit representation

• Like other stream files, byte streams cannot be used as CANDE files. Library/Maintenance commands
and the PRINT command can be used with byte streams, however. Most system utilities do not yet
support byte streams.

• MCP application programs are limited to transferring 220-1 (1,048,575) bytes in a single read or write
statement. For most applications, this is not much of a limitation.

• Since a very common use of byte streams is for text files, it would be nice if the MCP provided the
equivalent of a "read line" function for these files as part of Logical I/O. Alas, it doesn't do that directly,
but since MCP 7.0 (SSR 48.1) we have had something almost as good -- a virtual file I/O Handler
known as STREAMIOH. This IOH can be applied to a logical file solely through file attributes. It
provides a bridge between the fixed- or variable-length view most MCP applications have of files and
the line-delimited nature of a text file. STREAMIOH has a number of options for specifying delimiter
characters, tab expansion, trimming, etc. We'll discuss this feature a little later in the session. Of course,
you can always read and write a byte stream file as just a sequence of bytes and parse the lines yourself,
and in some applications that my be the best way to do it.

Using Stream Files

2016 UNITE MCP 4028 19

2016 MCP 4028ParadigmParadigmParadigm 19

Programming for Byte StreamsProgramming for Byte Streams

 Required physical and logical attributes

 Additional attributes
 ANYSIZEIO = true/false

 BUFFERSIZE = words

 AREALENGTH / AREASIZE = integer

 Attributes for input files
 DEPENDENTSPECS = true/false

 DEPENDENTINTMODE = true/false

 ADAPTABLE = true/false

To open a byte stream file, it must satisfy at least the minimum physical attributes

• FILESTRUCTURE = STREAM

• MAXRECSIZE = 1

• FRAMESIZE = 8.

You may also need to specify the following attributes, but their default settings are compatible with byte
streams:

• EXTMODE = (any 8-bit character representation)

• BLOCKSTRUCTURE = FIXED

• FILEORGANIZATION = NOTRESTRICTED

• UPDATEFILE = FALSE.

Once again, you almost always want to specify ANYSIZEIO=TRUE with byte stream files, for reasons we
will discuss next.

You may also want to specify BUFFERSIZE or AREALENGTH, but the MCP defaults for these attributes are
usually adequate.

DEPENDENTSPECS, DEPENDENTINTMODE, and ADAPTABLE are often useful when opening byte streams
for input. We will discuss these attributes shortly.

Using Stream Files

2016 UNITE MCP 4028 20

2016 MCP 4028ParadigmParadigmParadigm 20

Additional AttributesAdditional Attributes

 FILECLASS (read only)

 CHARACTERSTREAM

 WORDSTREAM

 RECORDORIENTED

 EXTDELIMITER (for CHARACTERSTREAM only)

 UNSPECIFIED (default)

 CR

 NL

 CRLF

 CRCC (recognizes CR-LF or CR-FF)

There are two additional attributes which are specifically applicable to byte stream files.

• FILECLASS is a read-only attribute that describes the class of a physical file's structure. It has three
values:

– CHARACTERSTREAM – any disk, printer backup, or CD-ROM file with
FILESTRUCTURE=STREAM, MAXRECSIZE=1, and EXTMODE other than SINGLE. It is also set
for certain TCP/IP port files and POSIX FIFO files.

– WORDSTREAM – Any disk, printer backup, or CD-ROM file with FILESTRUCTURE=STREAM,
MAXRECSIZE=1, and EXTMODE=SINGLE, plus certain TCP/IP port files.

– RECORDORIENTED – all other physical files.

• EXTDELIMITER specifies the delimiter characters used to separate records or lines in a file. It
presently has meaning only for files with FILECLASS=CHARACTERSTREAM. The possible values
are:

– UNSPECIFIED – the default
– CR – carriage-return only
– NL – new-line (line-feed) only
– CRLF – carriage-return followed by line-feed
– CRCC – carriage-return followed by either line-feed or form-feed

The MCP will automatically set EXTDELIMITER to CRCC when a file with the following
characteristics is created:

– KIND = PRINTER
– BACKUPKIND = DISK
– FILESTRUCTURE = STREAM

In addition, the MCP will place the actual delimiter characters in the file, creating a delimited byte
stream file.

You can specify EXTDELIMITER for other types of byte stream files, but the setting is purely
advisory. The Print System uses this attribute when printing byte stream files to determine what kind of
line delimiters and carriage control to look for.

Using Stream Files

2016 UNITE MCP 4028 21

2016 MCP 4028ParadigmParadigmParadigm 21

Using ANYSIZEIO with Byte StreamsUsing ANYSIZEIO with Byte Streams

 With ANYSIZEIO=FALSE (the default),
reads/writes are limited to the minimum of
 MAXRECSIZE

 Record area length in the program

 The number of units you request for the I/O

 Therefore, with MAXRECSIZE=1
 You would read or write exactly one byte at a time

 This is tedious and inefficient

I have mentioned that you will almost always want to set the ANYSIZEIO attribute to TRUE when
programming for byte stream files. Here's why.

In the default case, when ANYSIZEIO is FALSE, the number of frames (bytes) transferred between file
buffers and your program for reads and writes is limited by the MCP to the minimum of:

• MAXRECSIZE for the file

• The physical length of the record area in your program

• The number of frames you request to be transferred in the read or write statement. Note that in COBOL
programs, this value is normally the same as the size of the largest record declared for the file. We'll see
shortly how to control this dynamically. In Algol programs using array-row I/O, you specify this value
directly in the second parameter of a read or write statement.

Since by definition byte stream files have MAXRECSIZE=1, this default situation will only allow you to read
or write one byte at a time. In most cases this results in extremely tedious coding and inefficient execution,
due to the overhead of making a separate Logical I/O call for each byte in the file.

The ANYSIZEIO attribute was introduced specifically to address this problem for byte stream files.

Using Stream Files

2016 UNITE MCP 4028 22

2016 MCP 4028ParadigmParadigmParadigm 22

ANYSIZEIO, continuedANYSIZEIO, continued

 With ANYSIZEIO=TRUE, reads/writes are limited
to the minimum of
 Record area length in the program

 The number of units you request for the I/O

 The number of bytes left in the file

 1MB

 This allows your program to read an arbitrary
number of bytes at a time

 With MAXRECSIZE=1, random I/Os can start at
any byte position in the file

By setting ANYSIZEIO to TRUE, you remove the restriction imposed by MAXRECSIZE on the number of
frames that can be transferred to and from your record area by a read or write. Instead, the size of the transfer
is limited by the minimum of:

• The physical length of the record area in your program

• The number of frames you request to be transferred in the read or write statement

• The number of frames left in the file

• 1MB.

This means that the transfer will span record boundaries as necessary to satisfy the minimized length
requested.

Therefore, setting ANYSIZEIO=TRUE allows your program to read an arbitrary number of frames (up to 220-
1) from the byte stream with one I/O statement. In addition, since the MCP considers the file to have a record
length of one frame (one byte), random I/Os can start at any byte position in the file. This allows MCP
applications to read and write arbitrary amounts at arbitrary locations in the file, just as for byte streams on
other systems.

While ANYSIZEIO is particularly useful for byte stream files, it can be used for any file with
FILESTRUCTURE=STREAM, BLOCKSTRUCTURE=FIXED, FILEORGANIZATION=NOTRESTRICTED,
and UPDATEFILE=FALSE. If these restrictions are not adhered to, you will get an open error.

When ANYSIZEIO is used with record stream files, data transfer always starts at a record boundary and
continues for the number of frames requested, spanning records as necessary. If the transfer does not cover a
whole number of records, the remaining frames in the last record will be skipped, since the next I/O will start
at the next record boundary.

Using Stream Files

2016 UNITE MCP 4028 23

2016 MCP 4028ParadigmParadigmParadigm 23

Programming Input Byte StreamsProgramming Input Byte Streams

 Attributes
 DEPENDENTSPECS

 ANYSIZEIO

 INTMODE / EXTMODE

 DEPENDENTINTMODE

 ADAPTABLE

 Sequential READ

 Random READ
 Relative record number = byte offset in file

When reading byte stream files, it's usually best to open them using DEPENDENTSPECS=TRUE. This will
set a number of attributes from settings in the physical file, including FILESTRUCTURE, MAXRECSIZE,
FRAMESIZE, BLOCKSTRUCTURE, FILEORGANIZATION, EXTMODE, FILECLASS, and
EXTDELIMITER. You will probably also want to specify ANYSIZEIO=TRUE.

You can use the INTMODE and EXTMODE attributes to control character translation. Most MCP applications
are written to process EBCDIC internally. DEPENDENTSPECS sets EXTMODE from the physical file
attributes, but does not affect the INTMODE setting, which defaults to EBCDIC. If INTMODE and EXTMODE
are different, translation can occur.

If you are processing image data, or data with mixed text and binary content, you normally do not want
translation to take place. By setting DEPENDENTINTMODE=TRUE, you force the MCP to automatically set
the INTMODE for the logical file to the EXTMODE of the physical file. This will suppress character
translation.

If you need to have a general-purpose application that can handle any kind of file (traditional, record stream,
or byte stream), the restrictions on ANYSIZEIO can cause a problem. If you set ANYSIZEIO=TRUE and try
to open a file that does not meet the restrictions for ANYSIZEIO, you will get an open error. By setting
ADAPTABLE=TRUE, you tell the MCP to check the compatibility of the file with ANYSIZEIO. If the file is
compatible, the setting of ANYSIZEIO is not altered; if the file is not compatible, ANYSIZEIO is set to
FALSE. This allows the open to succeed, after which your program can interrogate the other attributes to
determine how to process the file.

There are no differences in the syntax of read statements for byte stream files. You can perform both
sequential I/O and random I/O using relative record numbers – just keep in mind that for byte stream files,
"record number" means "byte offset into the file".

Random I/O in COBOL is accomplished using the ACTUAL KEY clause of the SELECT statement. You also
need to declare the record size in a special way to allow ANYSIZEIO to work in a useful manner, as we will
see shortly.

Using Stream Files

2016 UNITE MCP 4028 24

2016 MCP 4028ParadigmParadigmParadigm 24

Programming Output Byte StreamsProgramming Output Byte Streams

 Attributes
 Required byte stream attributes

 ANYSIZEIO

 INTMODE / EXTMODE

 AREALENGTH / AREASIZE

 AREAS

 FLEXIBLE

 Sequential WRITE

 Random WRITE

When creating a byte stream file, you must explicitly set the FILESTRUCTURE attribute to STREAM, since
default attribute settings result in a traditional MCP file. You should also explicitly specify MAXRECSIZE=1
and FRAMESIZE=8 as attributes for the file, even if you are programming in COBOL. The required values
for the other attributes are the defaults.

As with input files, you probably want to set ANYSIZEIO=TRUE. You may also want to specify INTMODE
and/or EXTMODE. Setting INTMODE to EBCDIC (the default) and EXTMODE to ASCII will allow your
program to write EBCDIC text, but the text will be translated and physically stored in ASCII. If you are
writing binary or image data, it is usually best to set INTMODE and EXTMODE both to OCTETSTRING.

You can set AREALENGTH or AREASIZE when creating a byte stream file, but in most cases the MCP
default of 1,024 sectors will probably be adequate. You should also set a value for AREAS.

If you are using the MCP default for AREALENGTH, you will also probably want to set FLEXIBLE=TRUE,
so the number of areas will automatically expand as the file grows.

There are no differences in the syntax of write statements for byte stream files. You can perform both
sequential I/O and random I/O using relative record numbers – as with reads, keep in mind that "record
number" means "byte offset into the file".

Using Stream Files

2016 UNITE MCP 4028 25

2016 MCP 4028ParadigmParadigmParadigm 25

Byte Streams in AlgolByte Streams in Algol

FILE STREAM (KIND=DISK, FILESTRUCTURE=STREAM,
MAXRECSIZE=1, FRAMESIZE=8, ANYSIZEIO,
EXTMODE=ASCII, INTMODE=EBCDIC, FLEXIBLE,
FILEUSE=IO, TITLE=...);

EBCDIC ARRAY REC[0:5999];
BOOLEAN RESULT;
INTEGER N, BYTEX, BYTEL;

%-- SEQUENTIAL READ --
RESULT:= READ(STREAM, 6000, REC);
BYTEL:= REAL(RESULT.[47:20]);

%-- RANDOM WRITE --
RESULT:= WRITE(STREAM[BYTEX], BYTEL, REC[N]);

Access to byte streams is Algol is very straightforward. You specify the attributes you need directly in the file
declaration or through file attribute assignments in WFL, CANDE, or MARC.

Sequential reads and writes are done in the same way as for traditional files. With ANYSIZEIO=TRUE, the
record length parameter always specifies the number of 8-bit frames to read or write in the file.

Algol read and write statements return a Boolean result value that has the same format as the STATE
attribute. Some useful fields in this word result are:

• Bits [47:20] = the number of frames (bytes) actually read or written

• Bit [7:1] = parity or data transfer error

• Bit [9:1] = end of file encountered

• Bit [4:1] = length or size error (sometimes called "data error")

• Bit [0:1] = some exception occurred (this bit determines the word's true or false value).

To perform random I/O, you specify an arithmetic expression in square brackets after the file identifier. For
byte stream files, this will be the zero-relative byte offset into the file where the read or write will begin
transferring data. Algol also allows you to transfer data into the middle of the record area by using a pointer
expression or an indexed array identifier.

Using Stream Files

2016 UNITE MCP 4028 26

2016 MCP 4028ParadigmParadigmParadigm 26

Byte Streams in COBOLByte Streams in COBOL
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL.

SELECT BSF-BYTE-STREAM
ASSIGN TO DISK
ORGANIZATION SEQUENTIAL
ACCESS MODE RANDOM
ACTUAL KEY W-BSF-KEY
FILE STATUS WBS-FILE-STATUS.

Programming for byte stream files in COBOL-74 or -85 is somewhat more cumbersome, but all of the
facilities are available. The coding in both languages is identical.

In the SELECT statement, the file should have ORGANIZATION SEQUENTIAL (the default) and an
ACCESS MODE of either SEQUENTIAL (again, the default) or RANDOM. If you will be doing random I/O or
using SEEK statements, you need to include an ACTUAL KEY clause referencing a numeric data item in
WORKING-STORAGE. Keys defined as USAGE BINARY or REAL are more efficient than DISPLAY or
COMP.

The FILE STATUS clause is not required, but it is a useful and convenient way to get detailed I/O results in a
COBOL program. The data name references a two-character field.

Using Stream Files

2016 UNITE MCP 4028 27

2016 MCP 4028ParadigmParadigmParadigm 27

Byte Streams in COBOL, continuedByte Streams in COBOL, continued
DATA DIVISION.
FILE SECTION.
FD BSF-BYTE-STREAM

RECORD CONTAINS 1 TO 8192 CHARACTERS
DEPENDING ON W-BSF-SIZE

VALUE OF
FILESTRUCTURE IS STREAM
MAXRECSIZE IS 1
BLOCKSTRUCTURE IS FIXED
FRAMESIZE IS 8
EXTMODE IS ASCII
ANYSIZEIO IS TRUE
FLEXIBLE IS TRUE.

01 BSF-REC.
05 FILLER PIC X(8192).

When working with byte stream files, you frequently need to be able to read and write variable-length strings
of data and control the length programmatically. In order to do that, you must declare the COBOL FD in
particular way:

• Specify a RECORD CONTAINS clause with a range of 1 TO n, where n is the maximum size of the
string you need to read or write. The clause must also have a DEPENDING ON phrase, naming a
numeric data item in WORKING-STORAGE. The value of this item will control the number of frames
(bytes) read or written by each I/O statement for the file. As for ACTUAL KEY items, it is more efficient
to declare this length item as USAGE BINARY or REAL.

• Specify the stream-related attributes using VALUE OF clauses in the FD. Alternatively, you can specify
these externally using file attribute assignment. When reading existing files, you can usually specify
just DEPENDENTSPECS=TRUE and ANYSIZEIO=TRUE.

• Declare at least one record area for the file that is as large or larger than the maximum size specified in
the RECORD CONTAINS clause. COBOL will allocate the record area in your program based on the
longest record you define for the file.

Using Stream Files

2016 UNITE MCP 4028 28

2016 MCP 4028ParadigmParadigmParadigm 28

Byte Streams in COBOL, continuedByte Streams in COBOL, continued
PROCEDURE DIVISION.

OPEN I-O BSF-BYTE-STREAM.

* -- SEQUENTIAL READ
MOVE 4000 TO W-BSF-SIZE.
READ BSF-BYTE-STREAM AT END . . .

* -- RANDOM WRITE --
COMPUTE W-BSF-SIZE = W-INDEX + 1.
MOVE W-OFFSET TO W-BSF-KEY.
WRITE BSF-REC INVALID KEY . . .

To read or write a string of bytes in COBOL, you first move the length of the string you want to transfer to
the data item specified in the DEPENDING ON phrase of the RECORD CONTAINS clause for the file.

It's a good practice to reestablish this length value before each I/O statement, even if you are always reading
strings of the same size. The reason for this is that the DEPENDING ON data item is updated after each I/O
with the actual length of data that was transferred between your record area and the file buffers.

If you are reading or writing randomly, you may also need to place the relative record number (byte offset)
where the data is to be read or written into the data item specified in the ACTUAL KEY clause. Note that for
COBOL this is a one-relative byte offset into the file, since COBOL numbers records starting at 1.

Using Stream Files

2016 UNITE MCP 4028 29

2016 MCP 4028ParadigmParadigmParadigm 29

Determining Actual LengthDetermining Actual Length
77 W-STATE USAGE REAL.
77 W-LENGTH PIC S9(11) BINARY.

* -- UPDATED RECORD CONTAINS… DEPENDING ON VARIABLE
MOVE W-BSF-SIZE TO W-LENGTH.

* -- STATE ATTRIBUTE METHOD --
MOVE ATTRIBUTE STATE OF BSF-BYTE-STREAM TO

W-STATE.
MOVE ZERO TO W-LENGTH.
MOVE W-STATE TO W-LENGTH [47:19:20].

* -- CURRENTRECORDLENGTH ATTRIBUTE --
MOVE ATTRIBUTE CURRENTRECORDLENGTH OF

BSF-BYTE-STREAM TO W-LENGTH.

* -- MCPRESULTVALUE REGISTER -- COBOL-85 ONLY --
MOVE ZERO TO W-LENGTH.
MOVE MCPRESULTVALUE TO W-LENGTH [47:19:20].

One thing to keep in mind when working with byte stream files is that you may not get all the bytes you asked
for. This happens when you read the last chunk of data at the end of the file. You may have asked for, say,
3000 bytes, but perhaps there were only 1255 left in the file before the EOF. The MCP will not read beyond
the current end of file, and will only transfer data to your program up to that point.

There are several ways to determine how may bytes were actually transferred between the file buffer and your
program's record area.

• If you declared the file with a RECORDS CONTAINS … DEPENDING ON clause, the data item
referenced by the clause will be updated after each read or write with the actual number of frames
transferred. This is usually the most convenient method.

• As mentioned earlier, the STATE attribute holds the result of the last I/O operation in the form of a bit-
packed word. Bits [47:20] in that word indicate the actual number of frames transferred. The first
example on the slide shows how you can extract these bits into a COBOL data item. Note that the
partial word notation in square brackets works only with word-oriented data items, such as USAGE
REAL and BINARY.

• The CURRENTRECORDLENGTH attribute indicates directly how many frames were transferred by the
last I/O operation.

The last two methods have the disadvantage that you must get their value from an attribute at run time. This
involves making a procedure call to the MCP each time. While this is an efficient operation, there is some
overhead to it, especially if you are doing it thousands of times. Algol provides a more efficient mechanism
by returning a copy of the STATE attribute as the result of each read or write statement.

In COBOL-85, an equivalent mechanism is provided by the MCPRESULTVALUE special register. After each
I/O statement, the COBOL-85 run time stores a copy of the STATE attribute in this register, much the same
way it stores DMSII results in the DMSTATUS special register. Accessing MCPRESULTVALUE is many times
more efficient than obtaining an attribute value. The actual length read or written can be obtained from this
register in the same way as for the state attribute:

MOVE ZERO TO W-LENGTH.
MOVE MCPRESULTVALUE TO W-LENGTH [47:19:20].

Using Stream Files

2016 UNITE MCP 4028 30

2016 MCP 4028ParadigmParadigmParadigm 30

MCP Tools for Byte StreamsMCP Tools for Byte Streams

 Client Access Services (NX/Services)

 The Redirector

 FTP

 SYSTEM/EDITOR (U EDIT in CANDE)

 Print System

 SYSTEM/DUMPALL (very limited)

While MCP support for byte streams is not universal, and most of the utility programs from Unisys do not
currently support them, there are a number of facilities and tools for the MCP besides Logical I/O that you
can use to generate and access byte stream files.

• Client Access Services can access and transfer both traditional and byte stream files between MCP
shares and Microsoft Networking clients. The Windows Explorer Extensions add-in, the MCPCOPY
command line utility, and several types of named pipes can convert byte stream files to and from
traditional MCP file formats.

• MCP applications can use the Redirector to access files on external Microsoft Networking shares.
These files appear as byte streams in the MCP environment.

• The File Transfer Protocol (FTP) component of TCP/IP can transfer byte stream files to and from MCP
systems. FTP also has the ability to map both incoming byte streams to traditional MCP file formats
and outgoing traditional files to byte streams.

• SYSTEM/EDITOR can read, edit, and convert byte stream files.

• The Print System can generate printer backup files in byte stream format as well as standard backup file
format. It can also print byte stream files from other systems, obeying line delimiter conventions and
form feeds.

• SYSTEM/DUMPALL can read and write byte stream files, but the functionality is limited. DUMPALL is
driven largely by file attributes. Since MAXRECSIZE=1 for byte stream files, normally listing such a
file with DUMPALL results in a tabulation of one-character records, which is not very useful. Similarly,
copying byte streams with DUMPALL is by default not very efficient, since each byte in the file is
treated as a separate logical record. Since MCP 6.0, however, DUMPALL has supported a STREAM
qualifier in many of its commands that can be used with byte stream files. It specifies how big a chunk
to read and treat as a logical "record." DUMPALL will automatically use ANYSIZEIO when reading a
byte stream file with the STREAM qualifier, e.g.,

RUN *SYSTEM/DUMPALL(
"LIST ""XFER/UPLOAD.TXT"" ON PACK STREAM 100");

Using Stream Files

2016 UNITE MCP 4028 31

2016 MCP 4028ParadigmParadigmParadigm 31

Byte Stream File Access & TransferByte Stream File Access & Transfer

 FTP
 FTP concepts

 Inbound transfers

 Outbound transfers

 Client Access Services
 Windows Explorer Extensions

 Shared MCP directories

 MCP named pipes

 The Redirector
 Directly access files on remote shares from MCP

 Read and writes remotes files directly

 Perform remote directory operations

There are three principal methods of transferring or accessing byte stream files to and from the MCP.

The FTP component of TCP/IP can transfer files into and out of the MCP environment. These transfers can
be initiated either from the MCP environment or from a remote system.

Client Access Services can be used both to transfer files into and out of the MCP environment, and to access
MCP files directly from a remote system through a directory share. Both mechanisms are initiated from the
remote system. You can use either Windows Explorer (with or without the Unisys Extensions add-in) or a
number of types of named pipes to access the MCP shares.

Finally, the Redirector can be used to access files on remote system shared directories from MCP
applications. Through the Redirector API (a virtual file I/O Handler), you can directly read and write files in a
remote shared directory. You can also perform directory operations on the remote directory and its
subdirectories, including reading the directory.

Using Stream Files

2016 UNITE MCP 4028 32

2016 MCP 4028ParadigmParadigmParadigm 32

FTP ConceptsFTP Concepts

 Structure – FILE or RECORD

 Representation – ASCII, EBCDIC, IMAGE

 Transfer Mode – STREAM only

 Mapping
 Input styles

– RAW
– TEXT
– BINARY

 Output styles
– Default (TEXT and BINARY)
– UNEDITED

FTP can be used to transfer files between the MCP environment and virtually any other system which
supports a minimal implementation of FTP. Since the capabilities of file systems vary widely among systems,
FTP accomplishes this nearly universal interchange by reducing the files to a simple set of common
characteristics. It leaves each end of the transfer to convert this simple representation of files to a form that is
meaningful for that system.

FTP characterizes file transfers in three ways:

• Structure – the file can be transferred as a single entity or a record at a time.

• Representation – the data transferred can be encoded in ASCII or EBCDIC, or it can be unencoded. In
the unencoded, or IMAGE form, the data is considered simply to be a stream of 8-bit bytes (octets).

• Transfer Mode – the FTP standard defines this as a third characteristic, but the MCP currently supports
only one mode, Stream.

To convert the standard FTP parameters to the Logical I/O subsystem, the MCP implementation of FTP
supports a mapping process during the transfer. Mapping can translate the simplified characteristics of FTP
data to a wide variety of the richer file structures available under the MCP. Specifically, the mapping process
can convert byte stream files from other systems to either traditional or byte stream formats under the MCP.

Using Stream Files

2016 UNITE MCP 4028 33

2016 MCP 4028ParadigmParadigmParadigm 33

FTP Inbound TransfersFTP Inbound Transfers

 MCP can store file as traditional or stream

 RAW mapping style 
 Byte stream file – data stream is stored as is

 No translation – EXTMODE=OCTETSTRING

 TEXT mapping style  traditional file

 BINARY mapping style 
 Byte stream file

– If FTP structure is File and no RecordLength
option is specified

– Translation can occur

 Traditional file, otherwise

When you transfer files to the MCP environment, you want to receive the files in either traditional or byte
stream format. If byte streams are what you want, you essentially bypass FTP's mapping process, except
possibly for character translation.

By specifying the RAW mapping style for an inbound transfer, you are guaranteed of getting a byte stream file
stored in the MCP environment. The bytes are stored exactly as sent by the remote system. No character
translation is available with RAW. The file is stored with an EXTMODE of OCTETSTRING.

The TEXT mapping style will always store a traditional MCP file.

The BINARY mapping style may or may not store a byte stream file in the MCP, depending on the parameters
specified for the transfer.

• If the Structure for the FTP transfer is specified as File and no RecordLength option was specified in
the mapping parameters, you will get a byte stream file. With this type of inbound transfer, character
translation can occur.

• If the Structure is Record or a RecordLength parameter is specified, FTP will store a file in the
traditional (blocked) format.

Note that the characteristics of an FTP transfer can be affected by two external sources:

• If the transfer is remotely initiated, the originator has control over the Structure and Representation
characteristics of the transfer.

• FTP supports default settings through a hierarchy of configuration files. You may need to override
these defaults on a case-by-case basis.

Using Stream Files

2016 UNITE MCP 4028 34

2016 MCP 4028ParadigmParadigmParadigm 34

FTP Outbound TransfersFTP Outbound Transfers

 MCP structures a traditional file as
 FILE – always generates a byte stream for transfer

 RECORD – result depends on the receiving system

 MCP byte stream files are always sent as is (FTP
structure = FILE)

 Default output mapping style
 Translates record-oriented files to delimited text files

 Translation and trimming can occur

 UNEDITED output mapping style
 Sends the file without mapping

 No translation

For outbound transfers, FTP can send the file with either the FILE or RECORD structure. If you are starting
with an MCP byte stream file, it will always be sent with a structure of FILE, since the file is not record
oriented.

Output mapping supports two modes: a default mapping style and the UNEDITED style.

The default style is typically used with traditional or record oriented files, and is usually the one to use if you
want to transfer text. With this style, character translation can occur, as well as selected trimming of trailing
blanks, sequence numbers, and identification (patchmark) fields.

The UNEDITED style for output is the complement of the RAW style for input. It causes the file to be
transferred as is, without mapping or character translation. This is the style to use if you need to transfer a
traditional MCP file as a binary data stream without record delimiters.

Using Stream Files

2016 UNITE MCP 4028 35

2016 MCP 4028ParadigmParadigmParadigm 35

Client Access ServicesClient Access Services

 Windows Explorer

 Unisys Explorer Extensions add-in

 Unisys MCPCOPY command line utility

 Unisys MCP File Copier Windows GUI utility

 Directory shares – standard UNC names
 Use the \\server\share\… form for byte streams

 Do not use the \\server\PIPE\… form

With Client Access Services, you can both transfer and directly access files on MCP shares. Since Windows
does not support record-oriented files, the MCP files will appear to Windows applications as byte streams
having carriage-return/line-feed record delimiters.

When transferring a file to the MCP environment, you can use either Windows Explorer, the MCPCOPY
command line utility, or a Windows-based application that supports named pipes. If what you want to store in
the MCP environment is a byte stream file, do not use the Unisys Explorer Extensions add-in that is activated
by right-click-dragging a file to an MCP share. Instead, use a left-click-drag.

The Unisys MCPCOPY utility can transfer files to the MCP as byte streams or as record-oriented files based
on command line switches. In general, to get a byte stream file stored in the MCP environment, do not specify
the /Z:SR, /R, /D, /B, /U, /T, /W, or /F switches for MCPCOPY.

The Unisys MCP File Copier utility is a Windows GUI version of MCPCOPY. Both utilities are on the MCP
Installs share.

There are several Windows APIs and tools that support reading and writing to disk shares as well as
Windows-resident files, including the TYPE and MORE commands, and NotePad. To access shares using
these tools, use the Universal Naming Convention (UNC) form of file name,

\\server\share\pathname

instead of the "drive-letter : pathname" form.

Note that there are a number of named pipes supported by Client Access Services that start with
\\server\PIPE\… These pipes either convert between Windows byte streams and MCP traditional files
or connect to port files in MCP application. Do not use these if you want to transfer byte stream files to the
MCP and have them stored as byte streams.

Using Stream Files

2016 UNITE MCP 4028 36

2016 MCP 4028ParadigmParadigmParadigm 36

The RedirectorThe Redirector

 Gives MCP applications access to remote disk,
CD-ROM, and printer shares

 Remote files accessed as byte streams

 Implemented as a KIND=VIRTUAL file
 IOHANDLER library REDIRSUPPORT

 Additional IOH… file attributes

 Attributes for the Redirector
 REDIRECTION = TRUE

 IOHSTRING

 Special UNC convention for TITLE or LTITLE

The Redirector, first introduced in MCP 5.0, is a complement to Client Access Services. It allows MCP
applications to access disk, CD-ROM, and printer shares on a remote system using Microsoft Networking.
Using the Redirector you can directly read and write files on these shares – no separate file transfer process is
necessary. You program these files in your MCP application as byte stream files.

The Redirector is implemented as an instance of a new kind of file, KIND=VIRTUAL. The semantics of
virtual files are not implemented within the Logical I/O subsystem of the MCP. Instead, the semantics are
implemented by a library program, called an IOHANDLER (IOH), that Logical I/O calls in response to
standard open/close, read/write statements in an application. The interface for an IOHANDLER is
documented in the I/O Subsystem Programming Guide. You can even write your own IOHANDLER if you
have a unique input/output processing need.

There are a number of new attributes that support the use of virtual files. Most of these (e.g.,
IOHLIBACCESS, IOHTITLE, IOHFUNCTIONNAME) are used to establish the library linkage between
Logical I/O and the appropriate IOHANDLER when a file is opened. There is also a string parameter,
IOHSTRING, that is used to pass file-specific options from an application program to the IOHANDLER
library.

The Redirector is implemented by a Unisys-supplied IOHANDLER library, SYSTEM/REDIRSUPPORT.
There is a new Boolean file attribute, REDIRECTION, that can be used as a shorthand to configure the IOH
library linkage attributes for REDIRESUPPORT. Therefore, to use the Redirector, you have to specify the
attributes you would normally need to read or write a byte stream file, plus

• REDIRECTION = TRUE

• Some redirection-specific options in IOHSTRING

• A specially formatted TITLE or LTITLE string that represents the Uniform Naming Convention
(UNC) name for the file on the remote system.

The Redirector is also documented in the I/O Subsystem Programming Guide.

Using Stream Files

2016 UNITE MCP 4028 37

2016 MCP 4028ParadigmParadigmParadigm 37

Redirector ExampleRedirector Example

RUN OBJECT/MY/STREAM/PROG;
FILE SHARE (

FILESTRUCTURE = STREAM,
MAXRECSIZE = 1,
FRAMESIZE = 8,
ANYSIZEIO = TRUE,
EXTMODE = ASCII,
FILEUSE = IO,

REDIRECTION = TRUE,
IOHSTRING = "CREDENTIALS=username/pw",
LTITLE = *UNC/NTSERV/MYSHARE/

"MiscellaneousFiles"/"demo.txt");

One of the nice things about the Redirector is that if your program already understands how to read or write
byte stream files, you can simply use file attribute assignments to have it work with files on remote shares.

This slide shows a straightforward example of the attributes needed to access a file called
"MiscellaneousFiles\demo.txt" from the share "MYSHARE" on the server "NTSERV". The first set
of attributes are standard byte stream attributes. The second set invoke the Redirector. Note that the long
filename attribute LTITLE is used instead of TITLE because one of the nodes of the name contains more
than 17 characters.

The *UNC prefix on the file name is a special node recognized by the Redirector. It indicates, in place of the
standard double backslash (\\), that the rest of the name is in UNC format. Note that forward slashes are
used instead of backslashes in these MCP title strings.

The IOHSTRING attribute can specify a number of options for the connection to the remote server and share.
In addition to CREDENTIALS, keywords which can be specified in this string include:

– DOMAINNAME – DNS name for the remote server
– IPADDRESS – IP address for the remote server
– SERVERNAME – Microsoft Networking host name for the remote server
– SHARENAME – name of the share on the remote server
– USERDOMAIN – domain under which user credentials will be authenticated
– TIMEOUT – timeout value (seconds) for remote server connections to complete
– SMBTRACE – invokes SMB diagnostics (true/false).

Instead of using the *UNC form of TITLE attribute, you can identify the server by DOMAINNAME,
IPADDRESS, or SERVERNAME, and the share by the SHARENAME options in IOHSTRING. The TITLE or
LTITLE attribute would then specify just the path after the share name.

Since specifying CREDENTIALS in the IOHSTRING potentially exposes passwords, the Redirector can use
credentials files created by *SYSTEM/NXSERVICES/MAKECREDENTIALS. This utility will create an
encrypted file from a host name (which can be a domain name, IP address or server name), a username, a
password, and an optional user domain name. The file is stored under your usercode as
NXSERVICES/CREDENTIALS/hostname. The Redirector will automatically access this credentials file
under your usercode if CREDENTIALS is not specified in the IOHSTRING.

Using Stream Files

2016 UNITE MCP 4028 38

2016 MCP 4028ParadigmParadigmParadigm 38

Converting Byte StreamsConverting Byte Streams

 User written programs

 Client Access Services
 Windows Explorer Extensions

 MCPCOPY command line utility

 FTP
 Transfer file from and to the same MCP host

 Use input text mapping to specify record size, block
size, FILEKIND, etc.

 SYSTEM/EDITOR (U EDIT)

 StreamIOH

Sometimes you have a byte stream file in the MCP environment and need to process it using tools that only
support traditional files. In these cases you have two choices: write a program yourself to process the data, or
convert the byte stream to a traditional file format.

By writing your own program, you can accomplish any kind of conversion you want, and the process will
generally be quite efficient in the MCP environment. The problem with this approach, of course, is the time
and effort you need to spend designing and coding an appropriate program.

There are also a number of ways to convert byte streams using standard MCP facilities.

• Client Access Services (NX/Services) offers a number byte stream conversion capabilities, but only
when transferring files to or from an MCP disk share. To use these to convert a file that is already in the
MCP environment, you would have to first copy the file to an external system, then copy it back to the
MCP, or copy it between two MCP shares. In either case, all of the data being converted must travel to
an external system and back to the MCP over your network. There is a fair amount of overhead in doing
this, but it's fine for a quick-and-dirty solution. The two tools you can use are:

– Windows Explorer Extensions is a Unisys add-in you install in your Windows environment. It is
activated when you right-click-drag files to an MCP share in Windows Explorer. A pop-up menu
gives you a number of choices for source file formats, data file record sizes, and file names.

– MCPCOPY is a command line utility that also runs in the Windows environment. It is installed
automatically in your WINDOWS or WINNT directory when you install the Explorer Extensions add-
in. You can run this program directly, or use it in ".bat" files and Windows Scripting Host scripts.
Conversion formatting is controlled by a number of parameter switches, which are documented in
the help file for the Explorer Extensions. This help file is also on the documentation CD-ROM.

• FTP has extensive file conversion facilities, and can map byte stream files into a wide variety of
traditional MCP file formats, including symbol files, fixed length data files, and variable length data
files. The next slide shows an example using FTP to convert files locally.

• SYSTEM/EDITOR utility can read and write byte stream files and convert to and from traditional
symbol file formats. When using EDITOR from CANDE with byte streams, you need to initiate it using
a shell program (U EDIT <file name>).

• Finally, the STREAMIOH virtual file I/O Handler provides a convenient and efficient way to read and
write byte stream files directly in MCP applications as if they were traditional files.

Using Stream Files

2016 UNITE MCP 4028 39

Introduction toIntroduction to
STREAMIOHSTREAMIOH

A bridge between
MCP record-oriented files
and line-delimited text files

Using Stream Files

2016 UNITE MCP 4028 40

2016 MCP 4028ParadigmParadigmParadigm 40

What is StreamIOH?What is StreamIOH?

 Maps I/Os between traditional MCP record
formats and line-delimited text file formats
 Allows an MCP application to read and write byte

stream files as if they were record files

 Mapping to/from record format is done on the fly

 A virtual file implementation
 SL STREAMIOH, available since MCP 7.0

 Use with MCP byte stream files

 Use with files on remote servers via Redirector

 Invoked solely with file attributes!
– No program changes necessary
– Can be implemented using only file equation

StreamIOH is a facility that can map logical I/Os between the record-oriented formats we traditionally use
with MCP applications and line-delimited text file formats typically used on other systems. It allows MCP
applications to read and write line-delimited text files as if they were record files. This conversion is generally
done on the fly, as records are being read and written. With one exception that we will discuss later, the file is
not converted en masse between line-delimited and record format in a separate pass.

Like the Redirector, StreamIOH is virtual file implementation. By default, it is accessed through the SL
function name STREAMIOH. It has been available since MCP 7.0 (SSR 48.1), ca. 2002, but its
implementation was incomplete until MCP 9.0. It is bundled in the standard system software release.

You can use StreamIOH in two ways:

• To read and write line-delimited byte stream files within the MCP file system.

• In conjunction with the Redirector, to read and write line-delimited byte stream files on a network
share.

One of the really nice things about StreamIOH is that can be invoked solely with file attributes. This means
that you can give an existing program the ability to read and write variable-length, line-delimited text files
without changing the program or even recompiling it. StreamIOH can be implemented simply using file
equation.

Using Stream Files

2016 UNITE MCP 4028 41

2016 MCP 4028ParadigmParadigmParadigm 41

Using StreamIOH with MCP FilesUsing StreamIOH with MCP Files

MCP
App

FIB

MCP Logical I/O

StreamIOH

Byte-Stream
File

FIB

MCP
Physical I/O

"Virtual" (Record) File

"Physical" File

"Logical" (Stream) File

This diagram shows how StreamIOH works when accessing byte stream files within the MCP file system.
Since it is implemented as a virtual file, MCP applications access it through a standard file declaration and I/O
verbs in the programming language. The data structure that represents a file at run time is called a File
Information Block, or FIB. The MCP's Logical I/O module connects to the StreamIOH library to process the
MCP application's I/O requests. The result of these requests will be viewed by the application as full records.

The StreamIOH library dynamically creates another FIB to access the physical byte stream file. The library
reads or writes chunks of stream data for the physical file as necessary, and translates between the line-
delimited text format of the physical file and the record-oriented format that the MCP application sees.

Using Stream Files

2016 UNITE MCP 4028 42

2016 MCP 4028ParadigmParadigmParadigm 42

StreamIOH StreamIOH ExampleExample
?BEGIN JOB DEMO/STREAMIOH/DUMPALL;

RUN *SYSTEM/DUMPALL("LIST MY/""PROGRAM.ALG""");

FILE FIN(KIND=VIRTUAL, IOHFUNCTIONNAME="STREAMIOH",

IOHSTRING="KIND=DISK, DATA=90, " &
"FOLDING=SPACE, FOLDCHAR=ATSIGN, " &
"SEQBASE=100100, SEQINCREMENT=100, " &
"TAB=8");

?END JOB

Remember when we talked about the STREAM keyword for SYSTEM/DUMPALL a few slides ago? This slide
shows how to really read a line-delimited text file using DUMPALL.

Note that the DUMPALL parameter is written as if MY/PROGRAM.ALG is a record-oriented file, because a
record-oriented file is what DUMPALL really sees. StreamIOH converts the lines of the text file to fixed-length
logical records and presents those fixed-length records to DUMPALL.

Also notice that all of this is done using only file attributes:

• FIN is the internal name for DUMPALL's input file declaration.

• KIND=VIRTUAL indicates the logical file will be a virtual file.

• IOHFUNCTIONNAME="STREAMIOH" designates the function name of the library that will provide
the IOHANDLER functionality for the virtual file. This name is defined in the MCP's SL list.

• IOHSTRING is a string-valued attribute that supplies parameters to the IOH:
– KIND=DISK specifies that the text file will reside on disk in the MCP file system.
– DATA=80 specifies the length of the logical record DUMPALL will see in FRAMESIZE units (8-bit

bytes in this case).
– FOLDING=SPACE specifies that if the text line is too long for the fixed-length logical record, it

will be split at a space and converted to two or more records.
– FOLDHCAR=ATSIGN specifies that if the record is split, an "@" at the end of the record will

indicate where it was split.
– SEQBASE=100100 specifies that the IOH is to supply sequence numbers and what the starting

sequence number will be. Since the disk file has an ".ALG" extension, the logical records will be
formatted as ALGOLSYMBOL with sequence numbers in columns 73-80.

– SEQINCREMENT=100 specifies the sequence number increment.
– TAB=8 specifies that any embedded horizontal tab characters will be replaced with spaces to the

next column that is a multiple of eight positions.

These parameters will be discussed in more detail on the following slides.

Using Stream Files

2016 UNITE MCP 4028 43

2016 MCP 4028ParadigmParadigmParadigm 43

Declaring a StreamIOH FileDeclaring a StreamIOH File

 KIND=VIRTUAL,
IOHFUNCTIONNAME="STREAMIOH"
 IOHLIBACCESS=BYFUNCTION is the default

 There is no shorthand attribute, like REDIRECTION

 Otherwise, declare like an ordinary record-oriented file

 IOHSTRING attribute
 Passes parameters to the StreamIOH library

 Has parameters describing the physical file

 Has parameters defining the stream/record mapping

To use StreamIOH with a file, you need to declare or file-equate KIND=VIRTUAL and
IOHFUNCTIONNAME="STREAMIOH". IOHLIBACCESS=BYFUNCTION is the default, so this does not
need to be specified. Alas, there is no convenient shorthand attribute like REDIRECTION as there is for the
Redirector.

In all other respects, though, you declare and use the file declaration in your program as you would for an
ordinary record-oriented file.

As with the Redirector, the IOHSTRING attribute is used to pass parameters to the StreamIOH library. There
are two types of parameters used with StreamIOH:

• Parameters describing the physical file

• Parameters defining how the mapping between line-delimited and record-oriented formats is to be done.

Both types of parameters may be intermixed and specified in any order. They are written as a sequence of
name=value pairs, separated by commas. Additional spaces may appear around the commas.

Using Stream Files

2016 UNITE MCP 4028 44

2016 MCP 4028ParadigmParadigmParadigm 44

IOHSTRING KIND ParameterIOHSTRING KIND Parameter

 IOHSTRING KIND=DISK | CDROM
 File is local to the MCP environment
 Located by FILENAME/TITLE and FAMILYNAME

 Do not use "on" in TITLE or LTITLE!

 Default is DISK

 IOHSTRING KIND=VIRTUAL
 StreamIOH works through another I/O Handler
 Must specify IOHTITLE or IOHFUNCTIONNAME

 Alternatively, use REDIRECTION parameter to specify
REDIRSUPPORT (the Redirector)

 Value of the IOHSTRING parameter is passed to the
other IOH as its IOHSTRING attribute

The KIND parameter of the StreamIOH IOHSTRING attribute determines where and how StreamIOH will be
reading or writing the line-delimited text data.

Setting the KIND=DISK (the default) or KIND=CDROM parameters means that StreamIOH will be accessing
a physical file within the MCP file system. That physical file will be located by the file name attribute
specified for the virtual file. Note that the family on which the file resides must be specified using the
FILENAME attribute. Do not use an on-part when specifying the file name using TITLE or LTITLE, as that
implicitly changes the KIND of the virtual file to DISK, thus making it no longer a virtual file.

Setting the KIND=VIRTUAL parameter means that StreamIOH will not be accessing a physical file, at least
not directly. Instead it will be accessing the line-delimited data through another virtual file I/O Handler. This
could be an IOH that you write, or it could be the Redirector.

• IOHTITLE can be used to specify the other IOH by its codefile title.

• IOHFUNCTIONNAME can be used to specify the IOH by its SL function name. You should specify the
IOH library either by title or by function name, not both.

• IOHSTRING can be used to pass parameter information to the other I/O Handler's IOHSTRING file
attribute. Note that this is an IOHSTRING parameter embedded inside an IOHSTRING attribute. This
can look a little weird when you write it, but as we will see later, it enables some very useful behavior.

• REDIRECTION specified as a parameter is equivalent to the REDIRECTION file attribute. Specifying
this is a shorthand way of specifying the parameters KIND=VIRTUAL and
IOHFUNCTIONNAME="REDIRSUPPORT".

Using Stream Files

2016 UNITE MCP 4028 45

2016 MCP 4028ParadigmParadigmParadigm 45

IOHSTRING Conversion ParametersIOHSTRING Conversion Parameters

 FILEKIND = (standard mnemonics)
 DATA = <integer> [bytes]
 EXTDELIMITER = CR|LF|NL|CRLF|UNSPECIFIED
 FORMFEEDISDELIMITER = TRUE|FALSE
 TABINTERVAL = <integer> [columns]
 MARKID = "<string>"
 SEQBASE = <integer>
 SEQINCREMENT = <integer>
 TRIM = NONE|BLANKS|SEQUENCE|ID|ALL
 FOLDING =

NONE|SEQUENCE|ID|BLIND|SPACE|TRUNCATE
 FOLDCHARACTER = NONE|AMPERSAND|ATSIGN|

BACKSLASH|DOLLARSIGN|NUMBERSIGN|
PERCENTSIGN|SLASH|VERTICALLINE

The rest of the parameters in a StreamIOH IOHSTRING are used to control the conversion between line-
delimited and record-oriented formats. These fall logically into a few groups, which I will discuss on the next
set of slides.

Using Stream Files

2016 UNITE MCP 4028 46

2016 MCP 4028ParadigmParadigmParadigm 46

StreamIOH and FILEKINDStreamIOH and FILEKIND

 FILEKIND determines the record length
and format of a record-oriented file
 Text field

 Sequence number field

 Mark field

 StreamIOH determines FILEKIND from:
1. FILEKIND parameter in IOHSTRING attribute

2. FILEKIND explicitly set for the virtual (record) file

3. File extension in FILENAME or TITLE attribute

 Uses same extensions as Editor/PWB
(.C85, .ALG, .WFL, .TXT, etc.)

The FILEKIND file attribute specifies the internal layout of records. One of its main uses is to determine the
type of compiler associated with a source or object code file. For source files, the FILEKIND determines the
size and position of the text, sequence number, and mark ID fields in a record.

StreamIOH determines the FILEKIND of the virtual file from three places, in the order of descending priority
as shown on the slide. If FILEKIND has not been specified in some other way, and the file name of the
physical file contains an extension (.TXT, .DAT, etc.), then the extension determines the FILEKIND.
StreamIOH uses the same extension codes as the Editor utility. It also recognizes the extensions used by
Programmer's Workbench (PWB, NX/Edit), which all end in "_m".

Using Stream Files

2016 UNITE MCP 4028 47

2016 MCP 4028ParadigmParadigmParadigm 47

Special ConsiderationsSpecial Considerations

 For purely sequential I/O, stream/record
conversion is done on the fly

 If a random I/O request occurs
 Entire stream file is read and converted to a temporary

(hidden) fixed-length record file

 All further I/O is against this temporary file

 When the virtual file is closed, stream file may be
rewritten from temporary file to apply any updates

 StreamIOH works internally in EBCDIC
 Translation may occur between physical file and IOH

 May also occur between IOH and virtual (record) file

There are a couple of special considerations when using StreamIOH.

First, we have been talking thus far about using StreamIOH for sequential access to a line-delimited byte
stream file. When used in this fashion, all conversion between the line-delimited and record-oriented format is
done on the fly as reads and writes are issued by the MCP application.

StreamIOH also supports random I/O against the line-delimited file. The problem with random I/O is that
there is no way to predict where lines in the line-delimited file occur, since they can be variable length. To
handle this, the first random I/O operation causes StreamIOH to read the entire stream file, converting it into a
temporary, hidden, fixed-length record file. All further I/O for the virtual file will occur against this temporary
file. When the virtual file is closed, the temporary file is discarded. If writes occurred to the temporary file, it
is used to recreate the line-delimited file before being discarded.

The second consideration is that StreamIOH always works internally using the EBCDIC character code.
Depending on the INTMODE of the virtual file, translation may occur between the MCP application's record
area and StreamIOH. Depending on the EXTMODE of the physical file, translation may also occur between
StreamIOH and the physical file. In most cases involving line-delimited text files, however, this translation
something you want to have happening.

Using Stream Files

2016 UNITE MCP 4028 48

2016 MCP 4028ParadigmParadigmParadigm 48

StreamIOHStreamIOH ExamplesExamples

RUN MY/PROG; FILE FIXED(KIND=VIRTUAL,
IOHFUNCTIONNAME="STREAMIOH",
FILENAME=MY/STREAM.TXT, FAMILYNAME=PACK);

RUN MY/PROG; FILE FIXED(KIND=VIRTUAL,
IOHFUNCTIONNAME="STREAMIOH",
LFILENAME=MYSTREAM.TXT, FAMILYNAME=PACK,
IOHSTRING="FILEKIND=DATA, DATA=256," &

"FOLDING=TRUNCATE");

RUN YOUR/PROG; FILE SOURCE(KIND=VIRTUAL,
IOHFUNCTIONNAME="STREAMIOH",
FILENAME=UPDATE.C85, FAMILYNAME=DEV,
IOHSTRING="KIND=CDROM, TRIM=ID, " &

"FOLDING=NONE, MARKID=""UPDATE"", " &
"SEQBASE=100100, SEQINCREMENT=100");

This slide shows three more examples of file attribute equations that invoke StreamIOH.

In the first example, the line-delimited file is converted using StreamIOH defaults. This usually works well
for files coming from Windows systems.

In the second example, the line-delimited file is considered to be just textual data, and is converted to a fixed-
length, 256 character record area.

In the third example, a line-delimited file is read from CDROM and converted to COBOL-85 record format
(as determined by the extension on the file name). Any mark ID from the line-delimited file is discarded and
replaced by the literal "UPDATE". The records are resequenced 100100+100 as they are read. Since
FOLDING=NONE, if lines longer than the COBOL-85 record length are read, a DATAERROR is returned to
the MCP application. The TRIM=ID parameter is redundant in this example, as the MARKID parameter
causes any mark ID field read from the line-delimited file to be replaced according to the parameter value
supplied.

Using Stream Files

2016 UNITE MCP 4028 49

2016 MCP 4028ParadigmParadigmParadigm 49

For More InformationFor More Information

 I/O Subsystem Programming Guide
 Stream files

 Virtual files

 The Redirector

 STREAMIOH

 File Attributes Programming Reference Manual

 Client/Server Applications Development Guide

 Explorer Extensions Help (MCPCOPY)

 TCP/IP Distributed Systems Services (DSS)
Operations Guide (for FTP)

A number of Unisys documents contain information relevant to byte stream files in the MCP environment.
All of these references are relative to the MCP 6.0 release, and all are on the Product Information CD-ROM.

• The I/O Subsystem Programming Guide has a wealth of information on programming for various types
of files. See Sections 1 through 3 for general information on byte stream files and Section 12 for a
discussion of Virtual files, the Redirector, and StreamIOH.

• The File Attributes Programming Reference Manual is a dictionary of file attributes and their
permissible settings. This is the best source if you know the attribute you need to use but need detailed
information on its values and effects.

• The Client/Server Applications Development Guide is a standard Windows help file. It is the primary
resource for information on MCP named pipes.

• The Unisys Explorer Extensions add-in comes with another Windows help file which describes how to
use the extensions. It also contains documentation for the MCPCOPY command line utility. This file is
installed automatically when you install the extensions.

• The TCP/IP Distributed Systems Services Operations Guide contains complete information on several
TCP/IP components, including FTP. Sections 2 through 8 are the best resource for information on FTP
and its input and output mapping capabilities.

Using Stream Files

2016 UNITE MCP 4028 50

2016 MCP 4028ParadigmParadigmParadigm 50

Sample ProgramsSample Programs

 COBOL-74
 STREAMLIST

 STREAMCOPY

 COBOL-85
 STREAMLIST

 Algol
 STREAMLIST

 Download from:
http://www.digm.com/UNITE/2001/

 For Redirector and StreamIOH:
http://www.digm.com/UNITE/2007/

For the original version of this presentation, I write a few example programs that illustrate the basic
techniques for reading and writing sequential byte stream files.

There two COBOL-74 examples. STREAMLIST reads a byte stream as a text file and lists it to a standard
printer file, adding page headings and line numbers, and folding lines that are too long to fit on a single print
line. STREAMCOPY copies a traditional MCP file as a byte stream file, trimming trailing blanks and
appending CR-LF delimiters after each record. Both of these programs will also compile with COBOL-85.

There is also a COBOL-85 version of STREAMLIST. It is functionally equivalent to the COBOL-74 version,
but uses some of the nicer control structures available in the 1985 standard.

Finally, there is an Algol version of STREAMLIST as well. It is also functionally equivalent to the COBOL-
74 version.

You can download copy of this presentation in PDF format, from our web site.:

http://www.digm.com/UNITE/2016/

For the source of stream file samples, see:

http://www.digm.com/UNITE/2001/

For the source of Redirector and StreamIOH samples, see:

http://www.digm.com/UNITE/2007/

Using Stream Files

2016 UNITE MCP 4028 51

ENDEND

Using Stream Files – 2.0

